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Abstract 26 

Cell types can be classified based on shared patterns of transcription. Variability in gene 27 

expression between individual cells of the same type has been ascribed to stochastic 28 

transcriptional bursting and transient cell states. We asked whether long-term, heritable 29 

differences in transcription can impart diversity within a cell type. Studying clonal human 30 

lymphocytes and mouse brain cells, we uncover a vast diversity of heritable transcriptional 31 

states among different clones of cells of the same type in vivo. In lymphocytes we show that 32 

this diversity is coupled to clone specific chromatin accessibility, resulting in distinct 33 

expression of genes by different clones. Our findings identify a source of cellular diversity, 34 

which may have important implications for how cellular populations are shaped by selective 35 

processes in development, aging and disease.   36 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.14.480352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.14.480352


 3 

Main 37 

Multicellular organisms are composed of diverse cell types, which can be classified according 38 

to shared patterns of gene expression (1, 2). Transcriptome-wide single cell profiling separates 39 

cells into distinct cell types, and at the same time reveals transcriptional variability among cells 40 

of a single type (3). Variability in gene expression within cell types is thought to reflect 41 

stochastic transcription or transient fluctuations of phenotype, often referred to as cell states 42 

(4). We asked whether an additional mechanism - heritable, clonal differences - may contribute 43 

to variability observed within a cell type. Such differences would impart unique clonotypic 44 

features upon the progeny of individual cells, which could explain some of the diversity seen 45 

within cell types and have implications for cell selection in health and disease (5).  Evidence 46 

exists for short-term heritability of gene expression states in transformed cell lines in vitro (6-47 

9), but this has not been much explored in primary cells or in vivo at a transcriptome-wide 48 

level. Here we assessed whether stable clonally heritable gene expression programs contribute 49 

to diversity in long-lived human lymphocyte subsets as well as in cells of the mouse central 50 

nervous system in vivo.  51 

 52 

Expanded T cell clones show evidence of heritable clonal gene expression in vivo 53 

We took advantage of the genetic barcodes arising from T cell receptor (TCR) rearrangement 54 

to study clonally expanded populations of cells that develop from individual naïve CD8+ T 55 

cells in humans after vaccination with yellow fever virus vaccine (YFV-17D). We analyzed 56 

the transcriptomes of 3,837 HLA-A2/YFV-specific CD8+ T cells from three healthy donors 57 

using high-sensitivity, full transcript single cell RNA-seq (Smart-seq3) (table S1) (10). We 58 

identified single cells belonging to expanded clonal populations in the circulating blood during 59 

the memory phase of the immune response (Donors A, B: Day 180, Donor C: Day 1,286 post-60 

vaccination) according to shared TCR sequences (11). To analyze clonal gene expression 61 
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differences, we selected the 10 largest clones from each donor (205, 252, 203 cells in total in 62 

donors A, B, C respectively, with at least 14 cells/clone) and identified differentially expressed 63 

genes between clones in each donor independently using an ANOVA F-test (unadjusted p < 64 

0.05, Fig. 1A, Fig. S1A, table S2). We computed the same statistics using 1000 permutations 65 

of clone labels to estimate the number of false discoveries.  Using the 95th percentile among 66 

these 1000 permutations as a conservative estimate of false discoveries, we found 175, 268, 67 

and 323 genes with interclonal differential expression (interclonal variability), in excess 68 

beyond false discoveries, in donors A, B and C, respectively (Fig. 1A, methods).  69 

 70 

Principal component analysis performed on the top interclonally differentially expressed genes 71 

(106 genes, estimated FDR < 3%) identified a subset of genes linked to T cell differentiation 72 

states (fig S1, A-D) (11-13). These genes contributed strongly to PC1 and spread the CD8+ T 73 

cells from all donors along the established continuum of differentiation states observed in 74 

memory CD8+ T cell populations (Fig. 1B) (11, 12, 14). Clonally related cells exhibited biases 75 

along this continuum of differentiation states, which persisted for years after the initial 76 

activation and expansion phase of the response. 77 

 78 

On the other hand, 45 of the most interclonally differentially expressed genes did not contribute 79 

strongly to PC1. A correlation analysis showed neither significant correlations between these 80 

genes and those associated with differentiation state, nor correlations among these 45 genes 81 

(Fig. 1, C-E). Some of these genes were expressed sporadically in the population, but often by 82 

many cells from individual clones (PAX8-AS1, C1orf228, DNFB31, PASK, SATB1) (Fig. 1E). 83 

Others were expressed frequently among all cells yet exhibited variable expression ranges 84 

between different clonal populations (IL2RB, CD7).  85 

 86 
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We also observed that some genes associated with differentiation state exhibited interclonal 87 

differential expression even among clones with similar differentiation bias (ZNF683, GNLY, 88 

GZMB, GZMH), suggesting complex patterns of transcriptional differences even within highly 89 

correlated gene modules (Fig. 1E). Thus, we identify two layers of heritable clonal 90 

transcriptional traits in long-lived memory T cell clones: (1) differentiation biases involving 91 

highly correlated blocks of genes frequently expressed across all memory CD8+ T cells and 92 

(2) gene expression differences which appears sporadic at the population level but which are 93 

restricted to a more narrow range within individual clones.   94 

 95 

Unique clonal transcriptional states emerge upon reactivation of individual T cells 96 

 97 

Long-lived memory T cells exist in a resting state and may circulate throughout the body for 98 

years between cell divisions (15). Reactivation of memory T cells leads to rapid proliferation 99 

and differentiation of this population, revealing a complex pattern of transcriptional activity 100 

not observed in the resting state (13, 16). Therefore, we decided to investigate clonally heritable 101 

transcriptional profiles after activation and differentiation of memory T cells in short-term in 102 

vitro cultures using a previously generated dataset (17).  103 

 104 

We examined nine distinct T cell clones (31-48 cells sampled from each clone), each expanded 105 

from a single memory T cell isolated 136 days post-vaccination (Donor D) (Fig. 2A). Based 106 

on total cell numbers after expansion, each clone was estimated to have undergone 10-12 107 

rounds of division during 19 days in cell culture. High-coverage, full-transcript single cell 108 

transcriptomes were generated using Smart-seq2, and gene counts were normalized based on 109 

transcripts per million reads (TPM) (18, 19). After filtering genes by discarding all TCR genes 110 

and removing lowly expressed genes, 7,440 genes remained for analysis. We measured 111 
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interclonal differential gene expression among all genes with ANOVA (parametric) and 112 

Kruskal-Wallis (non-parametric) tests and identified 2,034 genes which varied significantly 113 

between populations of clonally related cells (unadjusted p<0.01) in either test (1,488 in both 114 

tests, table S3). In contrast, only 98 genes met this threshold for significance (p<0.01) when 115 

performing the tests with a random permutation of clone labels.  116 

 117 

Some clonal structure was apparent when reducing the dimensionality from all 7,440 genes to 118 

the ten first dimensions (PC1-10) by PCA followed by UMAP visualization (Fig. 2B), and 119 

nearly unambiguous clustering of clonally related cells was achieved when performing the 120 

same analysis using highly significant clonal genes (Fig. 2B) (20). In contrast, using only the 121 

top two principal components (PC1-2) based on all 7,440 genes revealed no clear clonal 122 

structure in the data, suggesting that heritable clonal gene expression patterns cannot be 123 

explained by a few coordinated blocks of genes (Fig. 2B). Clonal gene expression differences 124 

were also clear when visualizing patterns of expression for genes with significant interclonal 125 

differential expression (Fig. 2C).   126 

 127 

To assess whether the clonal identities of individual T cells could be determined from single 128 

cell gene expression signatures, without TCR information, we applied a machine learning 129 

classifier (linear support vector machine, SVM). For cross-validation, we trained the SVM 130 

classifier on 80% of cells from each clone to select clonal genes and create 9 metagenes (SVM 131 

hyperplanes). These metagenes were used to predict the clonal origins of the remaining 20% 132 

of cells (Fig. 2D). This approach placed individual cells in their respective clones, with 133 

accuracy ranging from 80-100% for each clone (Fig. 2, E and F), estimated by 100 repetitions 134 

of the training/testing procedure with 100 or more clonally variable genes selected each time.  135 

Similar levels of accuracy were achieved when using 50% of the cells in each clone for training. 136 
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Performing the same analysis with randomly permuted clone labels gave no predictive power 137 

beyond chance (Fig. 2F). We observed that accuracy of the prediction increased with the 138 

number of selected genes, reaching 95% accuracy with 100 or more genes, further indicating 139 

that clones are not identified simply by a small number of rarely expressed genes (Fig. 2F). 140 

Closer examination of genes with significant interclonal differential expression revealed both 141 

genes expressed at a high level throughout the population, but with distinct clonally variable 142 

ranges of expression (e.g. B2M, SH3BGRL3, ID2), as well as genes expressed only in certain 143 

clones (e.g. SAMD3, REG4, DOCK5) (Fig. 2, G and H). Some highly expressed interclonally 144 

differentially expressed genes were previously identified as heritably maintained in short-term 145 

cultures of transformed cell lines and in cancer clones in vivo (8, 21). 146 

 147 

We next analyzed three highly expanded clonal populations (16-17 doublings over 20 days) 148 

from an additional donor isolated at day 2,001 post-vaccination (Donor E). We profiled 598 149 

single cells (clone A: 277, clone B: 162, clone C: 154) using Smart-seq3 enabling direct 150 

comparison between UMI and TPM-based normalization of gene expression values. We 151 

detected comparable numbers of interclonally differentially expressed genes whether using 152 

UMI or TPM-normalized datasets and no clear relationships between interclonal variability 153 

and transcript expression levels, cell size or granularity (fig. S2, A-C, table S4).  Interestingly, 154 

with larger numbers of cells and fewer clones, PCA clearly separated single cells into the three 155 

clones A, B, and C, just by considering PC1 and PC2 (fig. S2D). Furthermore, clone A visibly 156 

split into two subgroups of cells, which were made precise by Louvain clustering. The two 157 

subgroups appeared to have undergone distinct differentiation trajectories during activation 158 

and expansion based on phenotyping of surface marker expression by flow cytometry (fig. 159 

S2E). This was further demonstrated by examining a large set of genes enriched within each 160 

clonal population, which revealed shared clonal features of all cells within clone A as well as 161 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.14.480352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.14.480352


 8 

evidence of subclonal diversification (fig. S2, F and G). These findings confirm the diversity 162 

of interclonal variability in gene expression, and its heritability even in the presence of 163 

subclonal diversification. 164 

 165 

Stable maintenance of clonal transcriptional states in memory T cells for over a year in 166 

vivo 167 

 168 

Late in the memory phase of the immune response, the clonal diversity of the circulating 169 

memory T cell pool decreases, increasing the likelihood that independently sorted T cells share 170 

a clonal origin, and we refer to such cells as sisters (11). Because circulating memory T cells 171 

continuously migrate between distinct lymphoid tissues, and possibly other peripheral 172 

organs/tissues, it is likely that these cells have experienced substantially different 173 

environmental exposures over the course of their individual lifespans (22). Nonetheless we 174 

observed that clonally related cells in vivo often shared heritable patterns of transcription (Fig. 175 

1). To address whether resting clonally related memory T cells in vivo produced progeny with 176 

similar clonal transcriptional profiles after activation and differentiation in vitro, we generated 177 

a dataset with 24 expanded clones isolated late in the memory phase of the response (day 593 178 

post vaccination) and identified four sets of sister clones (Fig. 3A). Cross-validated linear SVM 179 

classification on all 20 clones (combining sister clones from different wells) once again gave a 180 

high degree of accuracy of clonal identification (88% on average) for single cells from all 20 181 

clones, indicating that each clone possessed a distinct heritable transcriptional signature (Fig. 182 

3B, Table S5).   183 

 184 

Focusing on sister clones, we determined whether the progeny of one sister (one well) exhibited 185 

transcriptional profiles similar to the progeny from the other sister. Here we trained an SVM 186 
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classifier on all cells from one well (sisters A) for each of the four sets of sister clones, and 187 

used the identified clonal signatures to predict the clonal identity of cells from the remaining 188 

wells (sisters B, Fig. 3C). For 3 clones (Clones 1, 11, and 54) we observed 80, 100, and 79% 189 

prediction accuracy respectively. The fourth clone (clone 13) was predicted with lower 190 

accuracy (43%), reflecting more substantial differences between the wells containing each 191 

expanded sister clone, and fewer genes separating this clone from the other three (Fig. 3D).  In 192 

the broader context of all 20 clones, single cells from clone 13 (pooling both wells) were 193 

classified with high accuracy (90%) (Fig. 3b). This suggests that the clone had diversified 194 

somewhat between the two sisters yet retained a clonal transcriptional signature. 195 

 196 

In addition to genes with shared patterns of expression between sister clones, we also observed 197 

genes which varied between them. Some of the strongest differences observed between sister 198 

clones included genes which are known to exhibit fixed clonal expression patterns by 199 

lymphocytes throughout their maturation (e.g. KIR genes) (23). Using a nested ANOVA test, 200 

we identified 454 genes with significant (p<0.01) interclonal differential gene expression, but 201 

minimal intraclonal variability between sisters in separate wells (Fig. 3E, table S5).  202 

Conversely, we found 119 genes which showed significant (p<0.01) intraclonal variability 203 

between sisters, but whose interclonal variability was insignificant (beyond that which could 204 

be explained by well differences). Finally, 31 genes exhibited both inter- and intraclonal 205 

variability. This is consistent with our prior assessment that subclonal diversification can arise 206 

within clonally related cells during cell division, while an overarching clonal signature remains. 207 

 208 

By using TCR sequences to confirm the clonal identities of all single cells in each well, we 209 

noted that one well contained an admixture of cells from two different clones, likely due to 210 

technical errors while sorting the founder cells for these clonal expansions (accounted for in 211 
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Fig. 3, B-F). Well H4 was found to contain cells from clones 11 and 54 in roughly equal 212 

numbers, indicating that memory T cells corresponding to each clone were sorted together into 213 

this well.  Despite this admixture occurring, cells from well H4 retained gene expression 214 

patterns similar to their sisters in other wells (clone 11 sisters in well H3, and clone 54 sisters 215 

in wells B10/B4) (Fig. 3, C and D). This was particularly apparent when comparing clone-216 

specific gene expression patterns between clones 11 and 54 side by side (Fig. 3D). This 217 

fortuitous experiment demonstrates that diverse interactions between unrelated cells within an 218 

enclosed environment was not a major contributor to clonal gene expression differences. 219 

 220 

Heritable phenotypes are not due to genomic copy number variations 221 

 222 

Because genetic mutations can occur during somatic cell division, we asked whether clones 223 

experienced extensive genomic copy number variations (CNV) during somatic clonal 224 

expansions. We performed single cell CNV analysis on 4 single cells from each of the 24 clonal 225 

expansions in the previous dataset (fig. S3, A and B) (24). We observed no consistent evidence 226 

of CNV (500kbp bins) in the genomes of each clone in our set of 24 expanded clones (Fig. 3), 227 

with the exception of one clone exhibiting loss of Y chromosome, known to spontaneously 228 

occur in human lymphocytes (25). In this clone (clone 12) we observed a loss of Y-229 

chromosome gene expression as well as a 50% reduction in the average expression of CD99 230 

which is a pseudoautosomal gene expressed on both X and Y chromosomes (fig. S3B). 231 

 232 

Clonal gene expression differences impact protein expression levels  233 

 234 

We collected information about cell surface expression of several proteins on the progeny of 235 

all 24 expanded T cells from the previous experiment (identifying sisters separately). This 236 
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allowed us to address whether differences in mRNA expression levels translated to differences 237 

in protein levels in single cells and between different clones (table S6). Protein levels 238 

correlated poorly with mRNA expression across the entire population of CD8+ T cells in our 239 

dataset (coefficient of determination range r2=0.001-0.190), consistent with the understanding 240 

that noise in either measurement and that transcription often occurs in bursts results in weak 241 

mRNA-protein relationships in single cells surveyed at a snapshot in time (26). We observed 242 

a substantially stronger correlation when analyzing the average mRNA and protein expression 243 

levels for each clone (range r2=0.018-0.556, fig. S4). This was true for highly expressed 244 

proteins which define cell type (CD8A) as well as variably expressed proteins reflecting 245 

different activation or differentiation states (CD95/FAS, CD27, PD-1). Working with clonal 246 

averages, the highly non-normal distribution of mRNA abundance at the single-cell level is 247 

replaced by a nearly normal distribution around the clonal mean. These findings indicated that 248 

clones exhibit variable set points in mRNA abundance, which give rise to downstream 249 

variabilities in protein expression.  250 

 251 

Variable chromatin accessibility linked to clonally distinct transcriptional profiles 252 

 253 

Gene expression is determined by transcription factor activity on proximal promoters and 254 

regulatory regions of DNA, collectively referred to as cis regulatory elements (CREs) (27). 255 

Identifying accessible regions of chromatin with ATAC-seq has become a fundamental tool 256 

for assessing potential epigenetic heterogeneity between populations of cells, revealing hidden 257 

layers of gene regulation across cell types and differentiation states (28, 29). Because we 258 

observed complex patterns of heritable gene expression in T cell clones, we sought an 259 

explanation in clonally variable patterns of CRE accessibility. For this goal, we generated 23 260 

clonal expansions of T cells taken 1,401 days post-vaccination, splitting the expanded clonal 261 
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populations to perform bulk ATAC-seq (1-2 replicates) and RNA-seq (3 replicates) on each 262 

(Fig. 4A) (30). For six clones, we created 2-replicate ATAC-seq samples, which demonstrated 263 

a high degree of similarity, indicating little technical noise (Fig. 4B). We assigned a clonal 264 

variability score (Relative Peak Variability, RPV) to each ATAC-seq peak by comparing the 265 

range of peak heights among all clones to the range expected from technical noise (see 266 

methods, fig. S5, A-D for detailed explanation, table S7). Using this interclonal difference 267 

metric, we identified 9,846 significant interclonally different peaks out of 26,040 high 268 

confidence CREs detected in our clonal dataset (RPV>1, peak height range among clones 269 

greater than maximum expected from technical noise). This represents 37.8% of all CREs 270 

detected using stringent filters to remove potentially noisy peaks (normalized peak heights <30 271 

for all clones). These variable peaks were found to be evenly distributed among promoter and 272 

putative enhancer regions (Fig. 4C). Interestingly we found an enrichment of interclonally 273 

variable peaks (RPV>1.5) near interclonally differentially expressed genes from all datasets.  274 

To assess this enrichment, we compared interclonally differentially expressed genes to control 275 

gene sets developed from random permutations of clone labels (fig. S5, E and F). This 276 

enrichment was present, even for a large set of interclonally differentially expressed genes in 277 

vivo where we estimate a much higher false discovery rate (Fig. 1A, fig. S5F, table S2).  278 

 279 

Founder cells from each clone were profiled by flow cytometry to determine their 280 

differentiation state: stem cell memory, effector memory or intermediate (table S8). These 281 

founder differentiation states manifested in peak variability among their clonal progeny, 282 

especially when looking in the first two principal components of peaks (fig. S6C).  CRE 283 

accessibility around genes linked to differentiation states in vivo also separated the progeny 284 

according to founder phenotype indicating a stability of epigenetic features linked to memory 285 

T cell differentiation states (fig. S6, E and F). 286 
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    287 

Interclonal peak differences extended beyond differentiation state. This was particularly visible 288 

in two sister clones which were identified in this dataset. These two clones (5a and 5b) 289 

descended from memory cells of distinct differentiation states in vivo, yet they generated 290 

progeny in vitro with nearly identical protein expression profiles for all markers included in 291 

our flow cytometry analysis (fig. S6, A and B).  Performing PCA on ATAC-seq peaks, the 292 

sister clones separated in PC1/2, reflecting distinct founder states (Fig. 4B, fig. S6, C and D). 293 

In later principal components, however, the two sisters appeared significantly more similar 294 

than unrelated clones, again suggesting a heritable layer of clonal identity beneath 295 

differentiation state (fig. S6D). Unique patterns of CRE accessibility could be clearly identified 296 

for all clones, consistent with highly complex phenotypes defining each clonally expanded 297 

population (fig. S6G). 298 

 299 

Chromatin accessibility mirrors interclonal transcriptional differences 300 

 301 

We next addressed the extent to which we could ascribe differences in gene expression patterns 302 

observed across all clones with variability in chromatin accessibility in our ATAC dataset. A 303 

general comparison of ATAC and RNA-seq datasets, revealed that 62% of CREs with 304 

interclonal differences were located within 50kbp of genes expressed in our companion RNA-305 

seq dataset (Fig. 4D). These variable CREs were evenly distributed between promoters and 306 

putative enhancer regions. Looking only at RNA-seq data, we identified 1,899 genes which 307 

showed interclonal differences in expression levels (table S9). We identified at least one 308 

nearby variable CRE for 1,156 of these genes (RPV>1, 60.8%) (Fig. 4E). By correlating CRE 309 

and transcriptional differences across a set of 16 clones with high quality data for each 310 

measurement we were able to identify 2,934 CRE-gene pairs with correlated activity (Pearson 311 
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R2>0.2) (Fig. 4F). This highlights the power of combining both analyses to identify CRE-gene 312 

interactions which may be too subtle to identify using a single measurement. As expected, 313 

enhancer variability was found to have stronger correlations than promoter variability alone in 314 

most cases, although we did find clear evidence of genes with ON/OFF behaviors driven solely 315 

by promoter accessibility (fig. S7, A and B). We identified many genes (e.g. CADM1, KLRD1) 316 

with multiple variable CREs linked to transcriptional activity, but most CREs were highly 317 

correlated with each other (Fig. 4G, fig. S7, C-E). We found clear evidence for CRE variability 318 

linked to ON/OFF patterns of gene expression (e.g. IL17RB, HPGD, CADM1) as well as with 319 

tuning transcriptional activity of genes expressed by all cells (e.g. GNLY), including many 320 

observed in our other datasets (Fig. 4F, fig. S7E). These findings support that clones exhibit 321 

diverse, heritable patterns of gene expression and allude to the potential for epigenetic factors 322 

to encode a vast array of gene expression profiles among cells of a given type. 323 

 324 

Clonally heritable gene expression in the mouse central nervous system 325 

 326 

We next addressed whether our findings extend beyond human lymphocytes. For this we took 327 

advantage of TREX, a genetic barcoding approach developed in our lab that enables 328 

simultaneous clonal tracking and gene expression profiling in the mouse brain via single-cell 329 

transcriptomics (31). We delivered a lentiviral barcode library (Fig. 5A) into the developing 330 

mouse brain at embryonic day 9.5 and isolated barcoded cells from the somatosensory cortex 331 

from two mouse brains 14 days post-partum for high-sensitivity, single-cell RNA-seq (Smart-332 

seq3) (Fig. 5B, fig. S9). We obtained a total of 4,010 single cell transcriptome profiles and 333 

identified 18 distinct cell types including 7 neuronal, 3 astrocyte, 6 oligodendrocyte and 2 334 

immune cell types (Fig. 5C, fig. S10). We reconstructed 318 multi-cell clones that contained a 335 

total of 2,202 cells with an average size of 7 cells per clone (fig. S10).  336 
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 337 

Focusing on populations of cells of the same type where multiple large clones could be 338 

identified, we assessed whether we could identify interclonally differentially expressed genes. 339 

We found genes with interclonal differences in all cell types and observed that the expression 340 

of 12 to 584 genes were differentially expressed between clones of identical cell types (fig. 341 

S11). The number of interclonally differentially expressed genes detected was positively 342 

correlated with the number of clones per cell type (Pearson’s r = 0.44) and with the number of 343 

cells in clones (Pearson’s r = 0.47) (Fig. 5D). The number of genes detected also varied 344 

between cell types, e.g. we found 584 clonal genes in layer 2/3 excitatory cortical neurons 345 

(TEGLU7, brain 2, 74 cells, 11 clones) and 56 clonally-variable genes in deep layer astrocytes 346 

(ACTE2_DL, brain 2, 32 cells, 8 clones) despite similar numbers of clones and number of cells 347 

in clones (Fig. 5E). Significantly differentially expressed genes included Apoe with a wide 348 

distribution of graded expression levels in all cortical microglia (MGL1) that could be 349 

decomposed into narrow expression patterns between cells belonging to distinct clones (Fig. 350 

5F). A differentially expressed gene which was identified in multiple cell types is Lmo4 which 351 

exhibited a range of distinct expression patterns among clones from deep layer astrocytes 352 

(ACTE2_DL), layer 2/3 excitatory neurons (TEGLU7) and layer 4 excitatory neurons 353 

(TEGLU8) (Fig. 5G). Taken together, these data demonstrate that clonally heritable gene 354 

expression patterns are present in diverse cell types and species. 355 

  356 

Discussion 357 

 358 

Single cell transcriptomics has emerged as a powerful tool to find cellular diversity across 359 

developmental stages and tissue types. Diversity is seen even within cell types, where it has 360 

been attributed to the stochastic nature of transcription and to fluctuations between transitory 361 
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cell states. We provide evidence here that heritable transcriptional states provide an additional 362 

source of diversity within cell types.   363 

 364 

Surveying clonally related cells, we uncovered heterogenous and heritable identities which can 365 

persist for more than a year in vivo. The number of distinct phenotypes we see, even within a 366 

single cell type, seems limited only by the number of clones we observe. These identities are 367 

validated by gene expression signatures, which comprise dozens if not hundreds of 368 

independently regulated genes. We provide additional evidence that variable ranges of 369 

transcriptional activity between clones lead to corresponding variability in protein expression 370 

levels. In large datasets with many different clones, these signatures are strong enough to 371 

classify single cells with high accuracy, though they may appear as transcriptional noise 372 

without knowledge of clonal structure. However, in datasets with only a few highly expanded 373 

clones, the clonally heritable phenotypes emerge as the dominant signal (fig. S2). 374 

 375 

We demonstrate that these heritable traits are largely defined by epigenetic features. Interclonal 376 

differences in chromatin accessibility in promoter and enhancer regions imparts a wide variety 377 

of heritable gene expression states. These include rare expression of genes by a few clones as 378 

well as tuned expression of frequently expressed genes, defining specific transcriptional 379 

setpoints which differ between clones. The clone-associated variation in expression is neither 380 

determined by genetic variation or allele-specific regulation (17), and instead likely reflect 381 

configurations of regulatory factors (e.g. transcription factors) that can maintain cellular states 382 

over longer times. Our findings build on a growing body of evidence that heritable epigenetic 383 

features impart long lasting memory of a fixed transcriptional state on differentiated cells (32). 384 

We would stress, however, that our findings indicate that diversity in heritable epigenetic states 385 
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could generate heterogeneity within cell types extending far beyond what is conventionally 386 

understood to occur during cell type diversification.   387 

 388 

This form of heritable cellular diversity may have substantial implications for how we 389 

understand the evolution of cellular ecosystems in long-lived multicellular organisms. Variable 390 

expression of key genes is known to impart selective advantages in malignant cells in short 391 

term assays (33, 34) as well as during embryonic development (35), and it is possible that 392 

similar selective pressures may impact the clonal makeup of tissues under homeostatic or 393 

perturbed situations in ageing healthy tissues. This may be particularly important if such 394 

variability is not related to short-lived ‘cell states’ but rather reflects the clonal composition of 395 

a population. There is now evidence for large expansions of clonally related cells in a variety 396 

of different tissues in older humans, suggesting clonal competition is a common feature in 397 

aging (36-38). Understanding the role that heritable phenotypic diversity plays in this process 398 

has the potential to usher in new paradigms for how we view the complex cellular events which 399 

contribute to tissue homeostasis, ageing and response to stressors throughout a human lifetime. 400 

 401 

 402 

  403 
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Main Figures 511 

Figure 1. Heritable Transcriptional States in Expanded Clonal T cells In Vivo 512 

 513 

 514 

(A) Numbers of clonally variable genes found in top 10 largest clones for Donors A-C based 515 
on ANOVA F-statistic. Timepoint post-vaccination and cell numbers are shown near donor ID.  516 
Here, clonally variable genes are those with unadjusted p<0.05, and their number is estimated 517 
by comparison to the 95th percentile among 1000 permutations of clone labels (blue KDE-518 
smoothed histogram). (B) Distribution of cells from each clone and donor, according to 519 
differentiation state based on PC1 from clonally variable genes. Clones showing strong bias as 520 
compared to the full donor population are labeled (one-sample Kolmogorov-Smirnov test, two-521 
sided p-value, *<0.05, **<0.01. ***<0.001). (C) Correlation plot indicating highly correlated 522 
(green) and anti-correlated (purple) modules among the most clonally variable genes 523 
(excluding RPL/RPS genes). Genes are marked with red/blue if they are associated with 524 
differentiation state, and black otherwise. (D,E) Heatmaps indicating average clonal expression 525 
levels of genes with high levels of contribution to PC1 (D) and other clonal genes not associated 526 
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with differentiation states (E). Clones are ordered according to average PC1 score of all 527 
individual cells. Donors are indicated by color (Blue: A, Orange: B, Green: C) and rows depict 528 
average gene expression level of each clone (z-score). 529 
  530 
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Figure 2. Heritable transcriptional states in expanded clonal T cells in vitro 531 

 532 

 533 

(A) Schematic illustrating experimental strategy for isolating and expanding individual T cells 534 
in vitro. Single HLA-A2/YFV NS4b-specific memory CD8+ T cells were index-sorted and 535 
expanded with irradiated autologous feeder cells, IL-2 and NS4b peptide for 21 days prior to 536 
analyses. (B) Visualization of 352 cells from 9 different clones based on UMAP analysis using 537 
the ten first principal components (PCs) by PCA on all genes (7,440 genes, excluding TCR 538 
components and low expressed genes) (top left square), on clonally variable genes defined by 539 
both ANOVA F-statistic and Kruskal-Wallis as significant (n=1,488 genes; p<1e-2, top right) 540 
or highly significant (n=109 genes; p<1e-12, bottom left). The clonal distribution based on the 541 
two first PCs is shown in lower right plot. (C) Heatmap displaying 109 clonally variable genes 542 
defining distinct clonal transcriptome profiles. (D) Schematic illustrating strategy to test 543 
identification of single cells based on SVM classifier. (E) Confusion matrix displaying 544 
accuracy for each clonal population. (F) Prediction accuracy for all clones (real clones) 545 
compared to prediction accuracy of test performed on randomly assigned ‘clones’ (shuffled 546 
clones) relative to numbers of genes included for prediction. (G) Examples of highly expressed 547 
genes which show clonal variability (‘tunable’ genes) and (H) genes which are either ON or 548 
OFF in the majority of cells from each clone. All 352 cells are shown together in gray on right 549 
hand of each plot. 550 
  551 
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Figure 3. Shared transcriptional identities of progeny from ‘sister’ clones separated in  552 
vivo 553 
 554 

 555 
(A) Schematic illustrating experimental strategy for isolating and expanding sister clones in 556 
vitro. (B) Confusion matrix showing SVM prediction accuracies for all clonal cells (defined 557 
by TCR sequence, combining sisters in separate wells (clones 1, 13, 11 and 54)). (C) Schematic 558 
illustrating strategy to measure prediction accuracy by SVM algorithm trained on clonal T cells 559 
from one sister (in a single well) to predict cells from the second sister (in a separate well). One 560 
well (H4) contained a mixture of two clones (cl11 and cl54) and was used as a test well. 561 
Prediction accuracies are reported in confusion matrix shown underneath schematic 562 
illustration. (D) Heatmap showing clonal genes which were shared by clonally related cells 563 
derived from each sister in separate wells. Well H4 is bisected to indicate cells from clones 11 564 
and 54 respectively. (E) Nested ANOVA test to estimate the number of genes which show 565 
significant variability according to which well they are from versus which clonal origin they 566 
share. Genes on the Y-axis (well genes: 119) show significant transcriptional differences 567 
arising during activation in a given well independent of clonal relationships between wells. X-568 
axis genes (clonal genes: 454) are clonally variable and shared by cells from distinct sisters. 569 
(F) Split violin plots showing clonally variable gene expression patterns by sister clones. 570 
KIR2DL3 is a rare example of a clonally variable gene which also varies between sisters. 571 
  572 
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Figure 4. Heritable differences in chromatin accessibility underlie clonally variable gene 573 
expression 574 
 575 

 576 

(A) Experimental approach to collect matched RNA and ATAC-seq datasets from clonally 577 
expanded T cells. (B) PCA performed on all clonal samples using 26,040 high quality peaks. 578 
Biological replicates cluster tightly together (colored dots) and two sister clones (5a and 5b) 579 
are separated in PC1. (C) Fraction of peaks showing evidence of clonal variability (RPV>1) in 580 
genomic positions annotated as promoter (TSS) and enhancer regions. The 26,040 CREs 581 
analyzed reach peak height >=30 for at least one clone. (D) Relationship between variable CRE 582 
locations and genes which show clonally variable expression patterns in matched RNA-seq 583 
analysis. (E) Distribution of 9,846 clonally variable CREs (RPV>1). CREs not located within 584 
50kbp of an expressed gene in matched RNA-seq dataset (in any clone) are considered ‘not 585 
near gene’. (F) Scatterplot showing correlation between peak heights and gene expression for 586 
all expressed genes (9,520 genes) in the RNA-seq dataset. 16 clonal populations are included 587 
in this analysis (including 5a and 5b). Red dots indicate CRE-gene relationships with R2 >0.2 588 
(Pearson Correlation). (G) Numbers of highly correlated peaks plotted for each gene 589 
(2,284/9,520 expressed genes have at least 1 highly correlated peak). For a given gene, 'highly 590 
correlated' peaks are those whose R2 with gene expression exceeds the 95th percentile among 591 
all peaks on the same chromosome. (H) Relationships between RNA-seq measurements (top 592 
frames, dots represent triplicate RNA-seq measurements/clone) and peak heights (bottom 593 
frames, line graphs show individual CREs, colored separately) for select genes. 594 

595 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.14.480352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.14.480352


 26 

Figure 5. Clonally heritable gene expression in the mouse central nervous system 596 

 597 

 598 

 599 

(A) A lentivirus library encoding nuclear-localized EGFP and about 1 million expressed 600 
barcodes (‘cloneID’) for unique labeling of progenitor cells and high-throughput clonal tracing.  601 
This approach enables simultaneous clonal tracking and gene expression profiling. (B) Mouse 602 
cortical development from embryonic age 9.5 (E9.5) to post-natal day 14 (P14). 603 
Neuroepithelial cells (NE) generate a large diversity of cell types including excitatory 604 
projection neurons (PN), inhibitory interneurons (IN) and non-neuronal glia cells (G). Each 605 
color represents a distinct barcode. (C) Visualization of identified cell classes using UMAP. In 606 
total 4,010 single cell transcriptomes were collected from the somatosensory cortex of two P14 607 
mouse brains that were classified into 18 cell types. Capital black letters indicate a unique 608 
identifier for each cell type take from www.mousebrain.org. Colors indicate five broader cell 609 
type classes: astrocytes (reds), immune (yellows), interneurons (oranges), projection neurons 610 
(greens), and oligodendrocytes (purples). (D) Scatter plots showing that the number of clonal 611 
genes positively correlates with the number of clones (left) and the number of cells in clones 612 
(right). (E) KDE-smoothed histograms displaying the results of clonal shuffling experiments 613 
to identify clonal genes per cell type and brain. Blue KDE-smoothed histogram displays the 614 
number of false discoveries (genes with ANOVA F, p<0.05) among 1000 shuffles of clone 615 
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labels.  Blue line is the median number of false discoveries, yellow line the 95th percentile in 616 
the count of false discoveries. Red line the number of clonal genes that were found with real 617 
clone labels. (F,G) Examples of clonally-variable genes Apoe (F) and Lmo4 (G) in different 618 
cell types. 619 
 620 
 621 
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Supplemental Figures 626 
 627 
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Materials and Methods 667 

 668 

Data Generation 669 

Human study subjects 670 

HLA-A2+ human volunteers were identified from an ongoing study examining the longitudinal 671 

immune response to yellow fever vaccine YFV-17D (approved by the Regional Ethical Review 672 

Board in Stockholm, Sweden: 2008/1881-31/4, 2013/216-32, and 2014/1890-32). Written 673 

informed consent was given by all participants prior to study start. Longitudinal venous blood 674 

samples were collected in BD vacutainer tubes with heparin (BD Biosciences) and total 675 

peripheral blood mononuclear cells (PBMCs) were isolated by density centrifugation 676 

according to the manufacturers protocol (Lymphoprep, Stem Cell Technologies). Samples 677 

were cryopreserved at a concentration of 107 cells per milliliter in a solution of 90% fetal bovine 678 

serum (FBS, Gibco) and 10% dimethylsulfoxide (SigmaAldrich) and stored in liquid nitrogen 679 

for later use. 680 

 681 

Isolation of antigen specific CD8+ T cells from total PBMCs 682 

Cryopreserved samples were rapidly thawed at 37°C and washed in FACS buffer (PBS 683 

supplemented with 2% FBS and 2mM EDTA). CD8+ T cells were isolated by negative 684 

selection using magnetic beads following the instructions from the manufacturer (Miltenyi 685 

Biotec). The purified CD8+ T cells were incubated with APC-conjugated HLA-A2/YFV NS4b 686 

(LLWNGPMAV) dextramer (Immudex) for 15 min at 4°C, followed by addition of anti-CD3e 687 

Alexa700 (clone UCHT-1, BD Biosciences), anti-CD8a APC-Cy7 (clone SK1, BD 688 

Bioscience), anti-CD14 V500 (clone φP9, BD Biosciences), anti-CD19 V500 (clone HIB19, 689 

BD Biosciences), and Live/Dead Aqua dead cell stain (ThermoFisher) for an additional 15min 690 

at 4°C. Cells were washed twice in FACS buffer and suspended in FACS buffer for sorting. 691 
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Single, HLA-A2/YFV NS4b-dextramer+, live, CD14-CD19-CD3+CD8+ cells were sorted on 692 

single cell sort mode with index sorting. For the experiment where ATAC and RNA-seq were 693 

performed on the progeny clones, we used a more comprehensive antibody panel for sorting: 694 

anti-CD3e PE-Cy5 (clone UCHT1, BD Biosciences), anti-CD8a Alexa700 (clone SK1, 695 

Biolegend), anti-CD14 V500 (clone φP9), anti-CD19 V500 (clone HIB19), anti-CCR7 BV421 696 

(clone G043H7, BioLegend), anti-CD45RA PE-Cy5.5 (clone MEM-56, ThermoFisher), anti-697 

CD127 (clone A019D5, BioLegend), anti-CD62L (clone DREG-56, BioLegend), anti-CD57 698 

FITC (clone NK1, BD Biosciences), anti-KLRG1 APC-Fire750 (clone SA231A2, BioLegend), 699 

anti-CD26 PE-CF594 (clone M-A261, BD Biosciences), anti-CD94 PE (clone DX22, 700 

BioLegend), Live/Dead Aqua dead cell stain (Invitrogen).  Founder cells were classified 701 

according to expression of CCR7 and CD127, where stem cell memory (SCM) T cells were 702 

defined as CCR7highCD127+ and effector memory (EM) T cells as CCR7low/-CD127-. 703 

Intermediates (INT) between SCM and EM were CCR7low and/or CD127+. Virtually all 704 

founder cells expressed CD45RA, and only EM expressed CD57. A summary of normalized 705 

protein expression (log2) for each clone can be found in Table S9. 706 

 707 

Clonal Expansion of YFV-specific CD8+ T cells in vitro 708 

Single live CD8+CD3+HLA-A2/YFV-dextramer+ cells were index sorted directly into 96 well 709 

U-bottom plates containing 2 μg/ml YFV NS5b peptide (LLWNGPMAV, JPT Peptide 710 

Technologies), 20U/ml IL-2, and 50.000 irradiated (40Gy) CD3-depleted autologous PBMCs 711 

in T cell media (RPMI1640 with 10% heat inactivated human AB sera, 1mM sodium pyruvate, 712 

10mM HEPES, 50 μM 2-mercaptoethanol, 1mM L-glutamine, 100U/ml penicillin and 713 

50 μg/ml streptomycin) and were cultured for 18-22 days. Every 4–5 days half of the media 714 

was replaced with fresh T cell media containing 50U/ml IL-2 and 2 μg/ml peptide. After 18-715 

21 days, 10% of the cells of the cells from each well were mixed with 10µl AccuCount particles 716 
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(Spherotec), stained with anti-CD3e Alexa700, anti-CD8a APC-Cy7, anti-CD14 V500, anti-717 

CD19 V500 (BD Biosciences), and Live/Dead Aqua dead cell stain (ThermoFisher), and 718 

analyzed on a BD Fortessa flow cytometer (BD Bioscience) to detect and enumerate expanded 719 

live CD3+CD8+ T cells. After identifying all wells containing expanded HLA-A2/YFV NS4b-720 

specific CD8+ T cell clones, individual clones were selected for downstream analysis based on 721 

having larger expansions. Selected clones were washed in FACS buffer and stained with the 722 

same panel as described above (“Isolation of antigen specific CD8+ T cells from total 723 

PBMCs”), and in addition with anti-CD27 BV786 (clone L128, BD Bioscience), anti-PD1 724 

BV711 (clone EH12.1, BD Biosciences), anti-CD94 PE (clone DX22, BioLegend), anti-725 

CD62L BV650 (clone DREG-56, BioLegend), and anti-CD57 FITC (clone NK1, BD 726 

Biosciences). 727 

 728 

Lentivirus barcode libraries 729 

For mouse experiments, lentivirus preparations have been used as described previously (31). 730 

Briefly, plasmid libraries encoding a 30N random barcode (“cloneID”) downstream of an H2B-731 

EGFP transgene driven by the human EF1a promoter (EF1a-H2B-EGFP-30N) were generated 732 

using Gibson assembly. Plasmid cloneID libraries were used for virus particle production by 733 

GEG-Tech (Paris, France) and viruses with a titre of 1.27 x 109 TU/ml were used for all 734 

applications. A typical lentivirus preparation contained about 1.57x106 cloneIDs/µl with a 735 

largely uniform representation and high sequence diversity (31). 736 

 737 

Mice 738 

CD-1 mice obtained from Charles River Germany were used for all experiments. Animals were 739 

housed in standard housing conditions with 12:12-hour light:dark cycles with food and water 740 
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ad libitum. All experimental procedures were approved by the Stockholms Norra 741 

Djurförsöksetiska Nämnd.  742 

 743 

Ultrasound-guided in utero microinjection 744 

To target the developing mouse nervous system, timed pregnancies were set up overnight, plug 745 

positive females were identified the next morning and counted as embryonic (E) age 0.5. 746 

Ultrasound check was performed at E8.5 to verify the pregnancy. Pregnant females at E9.5 of 747 

gestation were anaesthetized with isoflurane, uterine horns were exposed, each embryonic 748 

forebrain injected with 0.6µl of lentivirus corresponding to 0.94x106 unique cloneIDs (31) and 749 

4-8 embryos injected per litter. Surgical procedures were limited to 30 min to maximize 750 

survival rates.  751 

 752 

Single-cell dissociations of brain tissue and flow cytometry  753 

Two mice with an age of 2 weeks (postnatal day 14, P14) were sacrificed with an overdose of 754 

isoflurane, followed by transcardial perfusion with ice cold artificial cerebrospinal fluid (aCSF: 755 

87 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 75 mM sucrose, 20 mM 756 

glucose, 2 mM CaCl2, 2 mM MgSO4). Mice were decapitated, the brain was collected in ice-757 

cold aCSF, 1 mm coronal slices collected using an acrylic brain matrix for mouse (World 758 

Precision Instruments) and the primary somatosensory cortex from three slices per brain (Fig. 759 

S8) was microdissected under a stereo microscope with a cooled platform. Tissue pieces were 760 

dissociated using the Papain dissociation system (Worthington Biochemical) with an 761 

enzymatic digestion step of 20-30min followed by manual trituration using fire polished 762 

Pasteur pipettes. Dissociated tissue pieces were filtered through a sterile 30 µm aCSF-763 

equilibrated Filcon strainer (BD Biosciences) into a 15 ml centrifuge tube containing 9 ml of 764 

aCSF and 0.5% BSA. The suspension was mixed well, cells were pelleted in a cooled 765 
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centrifuge at 300g for 5 min, supernatant carefully removed, and cells resuspended in 1 ml 766 

aCSF containing reconstituted ovomucoid protease inhibitor with bovine serum albumin. A 767 

discontinuous density gradient was prepared by carefully overlaying 2 ml undiluted albumin-768 

inhibitor solution with 1 ml of cell suspension followed by centrifugation at 100g for 6 minutes 769 

at 4°C. The supernatant was carefully removed, the cell pellet resuspended in 1 ml aCSF 770 

containing 0.5% BSA and the cell suspension transferred to a round bottom tube (BD 771 

Biosciences) for flow cytometry. Single EGFP+ cells were sorted on a BD Influx equipped 772 

with a 140 µm nozzle and a cooling unit with a sample temperature of 4°C and collected into 773 

384-well plates (Armadillo) for Smart-seq3 as described above. 774 

 775 

Single Cell RNA sequencing of T cells and mouse brain cells 776 

Both Smart-seq2 and Smart-seq3 protocols were used to generate single cell RNA-seq libraries 777 

from both in vivo and in vitro expanded HLA-A2/YFV NS4b-specific CD8+ T cells.  Smart-778 

seq3 was used to generate libraries for mouse central nervous system cells. 779 

For Smart-seq2 labeled T cells were sorted into 96-well V-bottom plates (Thermo) 780 

containing lysis buffer (0.1%Triton X-100, 2.5mM dNTP, 2.5µM Oligo-dT, 0.1µl RNAse 781 

inhibitor (40U/µl RRI, TaKaRa)) and immediately stored on dry ice or transferred to a -80°C 782 

freezer for long-term storage. All downstream steps were performed as described in Picelli et 783 

al 2014 (19).  Briefly, lysed cells were pre-incubated at 70°C for 3 minutes and stored in ice 784 

prior to reverse transcription reaction. RNA was reverse transcribed by adding 5.7µl of RT 785 

buffer (2µl 5x RT buffer (SuperScript II, Invitrogen), 0.5µl 100mM DTT, 0.07µl 1M MgCl2, 786 

2µl 5M Betaine, 0.25µl RNAse inhibitor (40U/µl RRI, TaKaRa), 0.25µl SuperScript II 787 

reverse transcriptase (200U/µl, Invitrogen), 0.2µl TSO (100µM), 0,63µl H2O and incubated 788 

on a thermocycler for 90 minutes at 42°C, followed by 10 cycles of 50°C and 42°C for 2 789 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.14.480352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.14.480352


 45 

minutes each and a 15 minute incubation at 70°C to inactivate the enzyme. The resulting 790 

cDNA was amplified for 24 cycles by adding a PCR mix containing IS PCR primers (5’-791 

AAGCAGTGGTATCAACGCAGAGT-3’) (0.25µl, 10µM stock) and KAPA HiFi hotstart 792 

ready mix (2x solution, 12.5µl + 2.5µl H2O, Roche, KK2602).  PCR conditions were: 793 

98°C/3mins; 24x cycles of (98°C/20s - 67°C/15s - 72°C/6 mins); 72°C/5 mins; 4°C. After 794 

PCR was complete, amplified cDNA was washed with AMPure XP beads (Beckman Coulter, 795 

A63882) to remove primer dimers and resuspended in nuclease free H2O. Sample quality was 796 

assessed by running randomly selected samples on a Bioanalyzer (Agilent 2100, High 797 

Sensitivity DNA kit, 5067-4626).  The concentration of dsDNA in each samples was 798 

measured on a Qubit Fluorometric Quantitation device (DNA High Sensitivity Kit, Thermo 799 

Fisher Q32851) and samples were stored at -20°C prior to library preparation. 800 

For Smart-seq3 reactions we followed the published protocol as written 801 

(https://www.protocols.io/view/smart-seq3-protocol-bcq4ivyw).  In brief we sorted labeled T 802 

cells into 384 well plates (Armadillo) containing 3µl of Smart-seq3 lysis buffer (0.04µl RNAse 803 

inhibitor (40U/µl RRI, TaKaRa), 0.1% Triton X-100, 5% Poly-ethylene Glycol 8000, 0.08µl 804 

dNTPs (25mM/each, Thermo Fisher R0182), 0.5µM OligodT30VN (100µM IDT - 805 

/5Biosg/ACGAGCATCAGCAGCATACGATTTTTTTTTTT  806 

TTTTTTTTTTTTTTTTTTTVN), 2.43µl H2O) and were immediately stored at -80°C until 807 

reverse transcription step. Prior to adding RT mix the plates were incubated at 72°C on a 808 

thermocycler for 10 minutes and stored at 4C immediately until RT mix is added. Reverse 809 

transcription was performed by adding 1µL of RT mix (0.1µl Tris-HCl pH 8.3 (1M), 0.12µl 810 

NaCl (1M), 0.1µl MgCl2 (100mM), 0.04µl GTP (100mM), 0.32µl DTT (100mM), 0.05µl 811 

RNAse Inhibitor (40U/µl RRI, TaKaRa), 0.08µl TSO oligo (100uM, IDT - 812 

/5Biosg/AGAGACAGATTGCGCAATGNNNNNNNNrGrGrG), 0.04ul Maxima H-minus RT 813 
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enzyme (200U/µl), 0.15µl H2O) and incubated on a thermocycler for 90 minutes at 42°C, 814 

followed by 10 cycles of 50°C and 42°C for 2 minutes each and a 5 minute incubation at 85°C 815 

to inactivate the enzyme. PCR was immediately performed by adding 6ul of PCR mix to each 816 

well (2ul Kapa HiFi Hotstart buffer (5x, Roche), dNTPs 0.12ul (25mM/each, Thermo Fisher), 817 

MgCl2 (100mM), 0.05ul Fwd Primer (100µM, IDT 5’-818 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATTGCGCAA*T*G-3’), 0.01ul Rev 819 

Primer (100µM, IDT – 5’-ACGAGCATCAGCAGCATAC*G*A-3’), 0.2µL DNA Polymerase 820 

(1U/µl, Roche), 3.57ul H2O).  PCR conditions were: 98°C/3mins; 24x cycles of (98°C/20s - 821 

65°C/30s - 72°C/4 mins); 72°C/5 mins; 4°C. For mouse CNS cells 22 cycles was used for 822 

preamplifcation. Downstream sample cleanup and quality assessment was performed as 823 

described for Smart-seq2. Sample concentrations were measured by incubating 1µl of cDNA 824 

from each well with 49µL of a fluorescent dsDNA dye (Quantifluor dsDNA kit, Promega 825 

E2670) and measured on a plate reader with fluorescent detectors (504nM Excitation/531nM 826 

Emission) and normalized to a standard dilution curve 827 

 828 

Bulk RNA-seq on T cells 829 

For mini-bulk RNA-seq 25 cells were sorted into Smart-seq2 lysis buffer and standard Smart-830 

seq2 reactions were performed with lower numbers of cycles during PCR (20 cycles).  831 

 832 

ATAC-seq  833 

We performed a modified version of the original ATAC-seq protocol optimized for small 834 

numbers of input cells (30).  In brief, we sorted 500-1000 clonally expanded HLA-A2/YFV 835 

NS4b-specific CD8+ T cells directly into 22.5µl of ATAC-buffer (12.5µl 2x TD Buffer 836 

(Illumina), 0.5µl 1% Digitonin (Promega G9441), 9.5µl H2O) in 96 well plates. After all 837 

cells were sorted we added 2.5µl TDE1 enzyme to each well and gently resuspended the 838 
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solution by pipetting each well 20x careful to avoid adding bubbles.  Samples were 839 

immediately transferred to a thermocycler set at 37°C and incubated for 30 minutes with the 840 

lid set at 50°C. To quench reaction, we added 150µl of ERC Buffer (Qiagen MinElute 841 

Reaction Cleanup Kit) to the 25µl ATAC reaction and transferred that 175µl volume to a 842 

Qiagen PCR cleanup column containing 150µl of ERC buffer.  Samples were centrifuged and 843 

washed according to the manufacturer’s protocol and tagmented DNA was eluted in 10µl of 844 

H2O.  845 

 846 

To amplify and index tagmented DNA, we performed a standard PCR using all 10µl of eluted 847 

DNA with 25µl 2x NEB High-Fidelity master mix (NEB, MO544), 2.5µl of 25µM forward 848 

primer (5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’), 2.5µl of 25µM 849 

indexed reverse primers (5’-850 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNTCGTCGGCAGCGTCAGA851 

TGTGTAT-3’) and 10µl H2O. PCR conditions were as follows: 72°C/5mins, 98°C/30s; 16x 852 

cycles of (98°C/30s - 63°C/30s - 72°C/1min); 4°C hold.  Amplified cDNA was size selected 853 

using magnetic beads (SPRI, Beckman Coulter B23319) by first incubating with 25ul (into 854 

50µl) beads to remove large cDNA fragments. The unbound liquid was then incubated in a 855 

separate well with 50µl (into 75µl) beads to purify the remaining cDNA fragments (size 856 

range: approx. 100-800bp). Samples were washed with 80% EtOH and eluted into 857 

DNAse/RNAse free H2O. Sample quality and concentration were assessed by bioanalyzer 858 

(High Sensitivity kit, Agilent) and Qubit (Thermofisher) before being pooled for sequencing. 859 

 860 

Whole Genome Amplification (WGA) of Single Cells 861 
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Single CD8+ YFV-specific T cells were index sorted into a 96-well V-bottom plate 862 

(Thermofisher) containing 9µl Tris-EDTA (TE) buffer and stored at -20°C for later use. After 863 

thawing 1µl of fragmentation buffer (Proteinase K + single cell lysis solution) and cDNA 864 

fragments were amplified by PCR according to the manufacturer’s protocol (GenomePlex 865 

Single Cell Whole Genome Amplification Kit, Sigma Aldrich WGA4).  The amplified libraries 866 

were run on a bioanalyzer to assess quality (Agilent) and DNA concentrations were measured 867 

on a Qubit Fluorometric Quantitation device (DNA High Sensitivity Kit, Thermo Fisher 868 

Q32851) and samples were stored at -20°C prior to library preparation.  869 

 870 

Preparing cDNA libraries for sequencing on Illumina Sequencers 871 

Smart-seq2 and WGA for CNV analysis: Libraries were prepared using an in-house 872 

tagmentation protocol as previously described (39).  In brief, 0.5-1ng of cDNA per sample was 873 

added to 20�l of Tn5 transposase buffer (4µl 40% Poly-ethylene Glycol 8000, 4uL 5x TAPS 874 

buffer (50mM TAPS-NaOH, 25mM MgCl2 (pH 8.5), 0.1-0.3µl of in-house tn5 transposase, 875 

H2O to final volume of 20µl – cDNA volume). Samples were incubated on ice and gently 876 

pipetted 15-20x to resuspend contents fully.  Tn5 binding was carried out on a thermocycler at 877 

55C for 7 minutes and samples were immediately taken after this time and 5µl of SDS (0.2% 878 

stock, final concentration 0.02%) was added to quench the Tn5 reaction.  Samples were 879 

subsequently indexed using Nextera XT 96 dual indexes and KAPA HiFi PCR reagents.  25µl 880 

PCR master mix (10ul KaPa HiFi Buffer (5x), 1.5µl dNTP (100mM), 5ul F Primer (N7xx), 881 

5µL R Primer (N5xx), 1µl DNA Polymerase (KaPa HiFi Kit), 2.5µl H2O) was added to the 882 

25µl tagmented cDNA libraries and PCR was performed with the following conditions: 883 

72°C/3mins; 95°C/30s; 10x cycles of (95°C/10s - 55°C/30s - 72°C/30s); 72°C/5 mins; 4°C. 884 
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Final libraries were cleaned with AMPure XP beads and resuspended in H2O. Individual 885 

samples were measured and mixed in equimolar ratios for Illumina Sequencing. 886 

 887 

Smart-seq3: After measuring individual cDNA library concentrations samples were diluted to 888 

100pg/µl followed by a transfer of 100pg cDNA to a new plates for tagmentation.  For Smart-889 

seq3 we followed the tagmentation procedures described in the Smart-seq3 protocols.io version 890 

3, with minor modifications. In brief, tagmentation was performed in 1µL of diluted cDNA 891 

and 1µL 1x tagmentation mix consisting of 10mM Tris-HCl pH 7.5, 5mM MgCl2, 5% DMF, 892 

and 0,1µl ATM (Nextera XT DNA Library Preparation kit, Illumina FC-131-1096), incubated 893 

at 55°C for 10min. Tn5 was removed from DNA by addition of 0.5µATM,2% SDS to each 894 

well. Following addition of 1,5µl custom illumina indexes (IDT), library amplification PCR 895 

was initiated by adding 4µl 1x PCR mix consisting of 1x Phusion Buffer (Thermo Scientific 896 

F530L), 0.01 U/µL Phusion DNA polymerase (Thermo Scientific), 0.2 mM dNTP/each 897 

(Thermo Scientific). PCR was performed at 3 min 72°C; 30 sec 95°C; 12 cycles of (10 sec 898 

95°C; 30 sec 55°C; 30 sec 72°C); 5 min 72°C in a thermal cycler. After PCR was complete, 899 

amplified cDNA was washed with homemade 22% PEG Beads to remove primer dimers and 900 

resuspended in nuclease free H2O.  901 

 902 

ATAC-seq: 10µl of tagmented DNA from each sample was used as input (the entire sample) 903 

and added to PCR mix for indexing and sample amplification.  PCR mix contained (2.5µl 904 

primer 1 (25µM Ad1_NoMx), 2.5µl primer 2 (25µM Ad2_xx), 25µL NEB Next HiFi PCR 905 

Mix (2x solution, NEB M0544), 10µl H2O). PCR conditions were as follows: 72°C/5min; 906 

98°C/30s; 12 x cycles of (98°C/10s – 63°C/30s – 72°C/1min); 4°C. Final libraries were size-907 

selected by performing 2-step bead cleaning (SPRIselect, Beckman Coulter B23318) to remove 908 
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larger DNA fragments and primer dimers and quality was assessed by Bioanalyzer (Agilent 909 

2100, High Sensitivity DNA kit). Samples were pooled according to indexes for Illumina 910 

sequencing. 911 

 912 

Illumina Sequencing 913 

All samples were run by the National Genomics Infrastructure core facility at SciLifeLab in 914 

Stockholm, Sweden.  For projects: P1902, P3128, P9855, samples were run on an Illumina 915 

HiSeq 2500 sequencer using default settings with 2x125 base read length.  For Smart-seq3 916 

libraries samples were run on an Illumina NovaSeq 6000 with S4-300 v1.5 flow cells, with 917 

2x150 base read length. 918 

 919 

Data Processing and Analysis 920 

 921 

Data pre-processing for Smart-seq3 of mouse brain cells 922 

For Smart-seq3 data on mouse brain cells, fastq files were generated with bcl2fastq and 923 

zUMIs version 2.8.0 or newer was used to process the raw fastq files. Low quality barcodes 924 

and UMIs were removed (3 bases < phred 20) before reads were mapped to the mouse 925 

genome (mm10) using STAR version 2.7.3. Read counts and error-corrected UMI counts 926 

were generated using ensemble gene annotation (GRCm38.91). Cells were filtered as low 927 

quality if they did not meet the following criteria; more than 40% of read pairs mapping to 928 

exon, at least 20.000 read pairs sequenced, at least 1000 genes detected. The gene expression 929 

matrices (UMI counts for introns and exons) for both brains were merged using the merge() 930 

function in Seurat v3(40). The data were log-normalized with a scale factor of 10000 using 931 

the NormalizeData() function followed by linear transformation (scaling) of data. 2000 932 

highly variable features were selected using FindVariableFeatures() followed by PCA and the 933 
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use of significant PCs (entire dataset: 30; projection neurons: 28, interneurons: 21, 934 

oligodendrocytes: 18, astroependymal: 13, immune: 19, vascular: 15) for graph-based 935 

clustering (SNN graph calculation and clustering using Louvain). After determining 936 

differentially expressed genes, we manually assigned major cell classes to each cluster 937 

(Astroependymal, Immune, Neurons, Oligodendrocytes, Vascular) using canonical 938 

markers. We then split cells by major cell type, performed subclustering and extensively 939 

annotated each cluster based on canonical marker genes from published data and 940 

from www.mousebrain.org. At each step, we removed (1) clusters classified with ambiguous 941 

labels and (2) outlier cells on the fringes of clusters in UMAP space. We annotated clusters 942 

using the same mnemonic identifiers as provided on www.mousebrain.org and added 943 

corresponding cell type location and general description as metadata. Finally, we merged all 944 

cells into a single file together with metadata and annotations. The filtered cellIDs were 945 

exported and used as input for cloneID extraction and clone calling using the TREX Python 946 

pipeline29. Following clone calling, the obtained cloneIDs were added as metadata to each 947 

Seurat object.  948 

Data pre-processing for Smart-seq2 and Smart-seq3 in Human T-cells 949 

For Smart-seq2 (19) data and Smart-seq3 (10) data, reads were aligned to the GRCh37 950 

reference with Ensembl version 75 annotations, and raw expression matrices contained 63677 951 

distinct Ensembl gene IDs. Highly variable genes were identified with Scanpy, using the 952 

'seurat_v3' method (40).   953 

 954 

For Smart-seq2 data (single-cell experiments P1902 and P3128), count matrices were 955 

normalized to transcripts per million (TPM).  Afterwards, genes were filtered out which did 956 

not reach a TPM value above 10 for at least 5% of cells in the dataset.  For Smart-seq3 data 957 

(single-cell experiment YFV2003, in vivo donors A,B,C) with unique molecular identifiers 958 
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(UMI), we filtered out genes which were not expressed (UMI > 0) in at least 5% of cells.  UMI 959 

data was normalized so that each cell had a total count of 1 million. 960 

 961 

All count matrices were then pseudo-log normalized (a count x was normalized to ln(x+1)).  T-962 

cell receptor genes were then dropped from the count matrices.  For quality control, we 963 

inspected the total counts and total number of genes expressed by each cell.  We filtered out 964 

cells which were outliers in these dimensions, based on visual inspection. 965 

 966 

Resulting gene expression matrices, together with sample metadata and gene metadata, were 967 

saved in AnnData Loom files using the Python package ScanPy (41). 968 

 969 

ATAC-seq Peak Calling 970 

ATAC-seq raw sequencing data was analyzed according to https://nf-co.re/atacseq version 971 

1.0.0. The entire pipeline was run with default parameters, except running peak-calling in 972 

narrow mode. In summary, after sample quality control and adapter trimming, reads were 973 

aligned to the Genome Reference Consortium Human genome build 37 (GRCh37) using bwa. 974 

Picard was used to mark duplicate reads and SAMtools/BAMtools for post-filtering of the 975 

reads. Normalized bigWig scaled to 1 million mapped reads was created with BEDTools. 976 

MACS2 was used for peak calling on the filtered BAM files in narrow-peak mode. A 977 

consensus peak set was created with BEDTools, and featureCounts was used to count the 978 

reads. All the default parameters, as well as version numbers of the individual tools used in 979 

the pipeline can be found at https://nf-co.re/atacseq/1.0.0.   980 

 981 

Identifying TCR sequences for Clonal Analysis 982 
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To find clonal populations of T cells we reconstructed TCRa and TCRb sequences using the 983 

software package MIXCR (v3.3)(42)  984 

 985 

Copy Number Variation Analysis 986 

Single CD8+ T cell WGA libraries and PBMC unamplified bulk sample libraries subjected to 987 

WGS were assessed for quality using FastQC 988 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), reads were mapped to the 989 

reference genome (human g1k v37 with decoy) using Burrows-Wheeler aligner (BWA-990 

MEM)(43). Mapped reads from single cell libraries derived from the same clone were 991 

merged into one clonal sample resulting in an average sequencing depth of 0.2x per such 992 

clone sample. The unamplified bulk sample was downsampled to 0.2x. The aligned read files 993 

were subsequently converted to bed files using bedtools (44). Normalized read counts and 994 

copy number profiles were obtained by Ginkgo using default parameter settings and a bin 995 

size for calling CNV corresponding to 500kbp (45).  996 

 997 

Clonally variable genes and controlling FDR, in vivo experiments 998 

To identify clonally variable genes, we used a custom pipeline based on the ANOVA F-statistic 999 

(a ratio of variance between groups to variance within groups).  The Python implementation of 1000 

ANOVA F in Scipy (‘f_oneway’) provides lists of p-values for tens of thousands of genes, 1001 

even with hundreds of cells belonging to dozens of clones, in milliseconds.  On the other hand, 1002 

zero-inflation and other deviations from normality imply that the the p-value obtained from the 1003 

F-distribution cannot be trusted. 1004 

 1005 

We also utilized the non-parametric Kruskal-Wallis test, in some in vitro data, but found that 1006 

it results largely overlapped with those of the ANOVA F test.  In order to identify clonally 1007 
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variable genes, both tests should be used with caution, especially for p-values in the range of 1008 

0.01 to 1e-6.  We found that genes with ANOVA F-test p-values below 1e-12 were 1009 

unambiguously clonal, as such p-values did not arise by chance, e.g., when permutation tests 1010 

were carried out.  Our single cell in vitro data sets exhibited many genes which were clonal at 1011 

the p<1e-12 level, and ANOVA F was sufficient on its own to find large numbers of clonal 1012 

genes. 1013 

 1014 

For other data sets, we strengthened the ANOVA F-test by performing an approximate 1015 

permutation test.  For this we carried out 1000 permutations of clone labels, to compare the 1016 

ANOVA F based p-values with a background distribution of p-values for each gene.  In fact, 1017 

we generated 10000 random permutations and took only the 1000 permutations which most 1018 

thoroughly scrambled the clone labels.  E.g., a permutation which sends labels AAABBBCCC 1019 

to BBBAAACCC would receive a minimal "scrambling score," since it has no real effect on 1020 

the clonal groups.  More precisely, the scrambling score of a permutation was defined as the 1021 

sum of the numbers of unique clone labels received within each real clone group.  For example, 1022 

a permutation sending real labels AAABBBCCC to ABCBBACCA would receive a score of 1023 

3+2+2=7, since the previous single-label groups AAA, BBB, CCC received 3 distinct labels 1024 

(ABC) and 2 distinct labels (BBA) and 2 distinct labels (CCA), respectively. 1025 

 1026 

This permutation procedure enabled us to estimate the excess of clonally variable genes, 1027 

defined as those with p<0.05, for in vivo experiments.  To estimate this excess, we compared 1028 

the number of clonally variable genes found with real clone labels to the median and 95th 1029 

percentile among 1000 scrambled clone labels.  Furthermore, by choosing more stringent p-1030 

value cutoffs, we were able to identify smaller sets of clonally variable genes while controlling 1031 

the false discovery rate, e.g., finding 50 clonally variable genes with an estimated 1 false 1032 
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discovery.  To estimate the number of false discoveries, we considered an additional 100 1033 

permutations of clone labels -- since the previous 1000 permutations were used in choosing an 1034 

appropriate p-value cutoff. 1035 

 1036 

Differentiation state ranking by PC1 1037 

 1038 

To rank the differentiation state for in vivo cells, we began by merging the gene expression 1039 

matrices for three donors (A,B,C), taking those genes which were clonally variable in at least 1040 

one donor and expressed by all donors.  This led to a set of 107 genes, on which we performed 1041 

principal component analysis.   1042 

 1043 

As expected, the largest loadings in PC1 were genes associated with differentiation state, like 1044 

GZMH, SELL, etc.  Genes were annotated as differentiation markers if they had a loading of 1045 

above 0.1 or below -0.1, in PC1.  We assigned each cell a score, between -0.5 and 0.5, based 1046 

on PC1, according to the following procedure:  the PC1 range was split into two equal-length 1047 

bins, and then linearly normalized to take values between -0.5 and 0.5, with the bin-divider at 1048 

zero.  The result was then negated, if necessary, so that GZMH (a marker of highly 1049 

differentiated T cells) was positively correlated with the normalized PC1 value.  The resulting 1050 

number was used as a score for differentiation state, with -0.5 indicating a less differentiated 1051 

state and 0.5 a more highly differentiated state for each cell.   1052 

 1053 

Machine learning for clonal gene expression signatures 1054 

 1055 

A machine-learning classifier called a linear support vector machine (linear SVM, or simply 1056 

SVM) was applied to single-cell gene expression matrices, to determine whether clonality 1057 
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could be predicted from gene expression in a supervised setting.  The SVM pipeline comprised 1058 

three steps:  a min/max scaler to scale all gene expression (previously pseudolog-normalized) 1059 

to a common interval, the selection of k most clonal genes based on ANOVA F statistic, and 1060 

then the application of the linear SVM with a misclassification penalty parameter C.  The linear 1061 

SVM classifier aims to separate each clone from all of the others (one v. all method), using a 1062 

weighted combination of the k selected clonal genes (a "metagene") as an SVM hyperplane. 1063 

   1064 

The two hyperparameters for this pipeline are the number of genes used for prediction (k), and 1065 

the penalty parameter (C).  Grid-search with 5-fold cross-validation was applied to find 1066 

hyperparameters which optimized the predictive accuracy of the SVM.  This search initially 1067 

considered between 2 and 300 genes, and loss penalties C from 0.001 to 100.0.  The C 1068 

parameter had little effect, once it was at least 0.1, and so we focused on a more refined analysis 1069 

of the number of genes on predictive accuracy.  The same pipeline was applied with C=0.1, 1070 

and between 1 and 800 genes, to record the accuracy of clonality prediction.  The entire process 1071 

was repeated with shuffled clone labels, in order to find an expected level of accuracy under a 1072 

null hypothesis. 1073 

 1074 

All machine learning pipelines were implemented in Python, using the scikit-learn package 1075 

(46). 1076 

 1077 

 1078 

Predicting clonality and confusion matrices 1079 

 1080 

To understand whether predictive accuracy was greater or less for specific clones, we 1081 

repeatedly (100 times) ran the SVM pipeline with optimal parameters k,C, to see how often 1082 
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cells from one clone were (correctly or incorrectly) classified as belonging to another clone 1083 

based on gene expression.  The results were recorded in "confusion matrices" whose diagonal 1084 

reflects the proportions of each clone that were correctly classified.  For these confusion 1085 

matrices, 80% of cells were used to train the SVM and 20% of cells were then held aside for 1086 

testing predictive accuracy, to match the 5-fold cross-validation earlier.  Confusion matrices 1087 

were also produced with fewer training cells (67% and 50%), but the resulting accuracy of 1088 

clonal prediction did not greatly suffer. 1089 

 1090 

This method was adapted to study cross-well clonal prediction in the P3128 dataset (Fig. 3).  1091 

In this case, cells from four clones were distributed into eight wells.  Rather than randomly 1092 

splitting the cells 80/20 into training/testing sets, cells from four wells were used for training 1093 

the SVM.  Following training, the SVM was used to predict the clonality of cells from the 1094 

remaining four wells.  One well contained a mix of two clones and was therefore unsuitable 1095 

for training the SVM to predict clonality.  The cells from that well were therefore held out in 1096 

the testing set in all cases.  This was repeated 100 times, switching wells used for training with 1097 

those used for testing each time, using penalty parameter C=1.0 and k=200 (200 genes). 1098 

 1099 

ANOVA and Nested ANOVA for clonal and well-significant genes 1100 

 1101 

Excluding the odd mixed-clone well, the cells from sister clones (103 cells from clones 1102 

1,11,13,54) in P3128 belonged to 4 clones, which were then split among 8 wells.  In order to 1103 

identify long-term clonally significant genes, and distinguish them from potentially short-term 1104 

well-dependent genes, we applied a nested ANOVA design.  This first step applies a standard 1105 

ANOVA F test to measure the clonal significance of each gene.  After this, the nested ANOVA 1106 

looks for significant differences between the two wells within each clone, applying the 1107 
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equivalent of a t-test (ANOVA F for two wells).  Results of the nested ANOVA are reported 1108 

as unadjusted p-values. 1109 

 1110 

Data preprocessing for bulk Smart-seq2 and ATAC-seq 1111 

 1112 

In experiment P9855, we gathered gene expression information for 70 samples, each with 25 1113 

bulks.  These 70 samples came from 24 clones based on TCR.  Preprocessing for these bulks 1114 

followed the same pipeline as single-cell Smart-seq2, including identification of highly 1115 

variable genes, TPM-normalization, pseudo-log normalization, dropping TCR genes, and 1116 

examination of total counts and genes for quality control.  After quality control, we kept 48 1117 

samples, representing three 25-cell mini-bulks from each of 16 clones.  Clonal genes were 1118 

assessed by ANOVA F statistic as before. 1119 

 1120 

ATAC data was obtained for 29 bulks, consisting of between 269 and 1000 cells (with most 1121 

bulks having 1000 cells).  These include 6 pairs of biological replicates (clones 1,15,22,23,8,9) 1122 

and one pair of sister clones (5a, 5b) sharing TCR sequence.  ATAC data contained the heights 1123 

of 80599 peaks for each sample, further annotated with genomic location, and type (intron, 1124 

promoter-TSS, etc.).  Peaks were removed that were annotated as promoters for TCR genes, 1125 

and also if they were located within 100 Kbps upstream or downstream of the TSS for a TCR 1126 

gene.  This removed 749 peaks. Peaks were filtered to exclude those peaks which never rose 1127 

above a height of 30.  This removed about two thirds of the peaks, leaving 26040 peaks.  The 1128 

ATAC peak height matrix was psuedolog-normalized, then stored, with all annotations, in an 1129 

AnnData Loom file, using the Python package ScanPy (41). 1130 

 1131 

 1132 
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Dimensional reduction and measuring similarity after ATAC-seq  1133 

 1134 

With only 29 samples and 26,040 peak heights, Euclidean distance is not expected to 1135 

adequately convey the similarities among samples.  Therefore, we considered the distance 1136 

between samples after dimensional reduction by principal component analysis (PCA with 1-20 1137 

PCs).  After dimensional reduction, we compared pairwise distances between (1) replicate 1138 

pairs, (2) the sister clones 5a/5b, and (3) non-replicate samples.       1139 

 1140 

Using only PCA with at least 5 principal components, we found that pairwise distances 1141 

between replicates were 5% of the pairwise distances between non-replicate samples, on 1142 

average.  The distance between sister clones was greater, but still below 50% of the distance 1143 

between non-replicate samples.  While this level of proximity is not particularly significant in 1144 

1 or 2 dimensions, it is very significant (beyond two standard deviations below the mean) when 1145 

one gets to 15 PCs or more.  This reflects a general fact about high-dimensional data – 1146 

Euclidean pairwise distances naturally grow larger as one adds more dimensions, but the 1147 

standard deviation among these pairwise distances remains stable.  For example, if one chooses 1148 

uniformly random points in a d-dimensional box (with coordinates between 0 and 1), then the 1149 

expected pairwise distance grows proportionally to the square root of d.  The standard deviation 1150 

among these distances remains constant.  For normal distributions, the same is true as d grows 1151 

large.  Thus, in high dimensions, it becomes much rarer to see points that are – for example – 1152 

half as far apart as a randomly chosen pair of points. 1153 

 1154 

 1155 

Variability of ATAC peaks using biological replicates 1156 

 1157 
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The six pairs of biological replicates enabled us to analyze technical noise in ATAC peak 1158 

heights.  When analyzing the 6 replicate pairs (12 samples), it became evident that the mean-1159 

variance relationship was complicated, especially for lower peaks.  Thus, we applied a non-1160 

parametric approach with smoothing in order to model the dependence of technical noise on 1161 

peak height. 1162 

 1163 

We first pooled all 6 replicate pairs among 26040 peak intervals to obtain 156,240 replicate-1164 

peak-pairs (RPPs).  Each RPP therefore comprised a peak of lowest height (ℎ!) and tallest 1165 

height (𝐻!).  If one considers another peak height (ℎ), the tallest height one might expect among 1166 

a replicate would be max{𝐻! :	ℎ! ≤ 	ℎ	}; in other words, the largest height among replicate pairs 1167 

whose low peak is lower than ℎ.  To deal with unexpected noise for peaks near zero, we 1168 

conservatively shifted this to max{𝐻!:	ℎ! ≤ 	ℎ + 10	}.		Based on this, we defined the maximum 1169 

expected gap (𝑀𝐸𝐺(ℎ)) for a height ℎ to be 1170 

 1171 

𝑀𝐸𝐺(ℎ) = max{𝐻!:	ℎ! ≤ ℎ + 10	}	– 	ℎ. 1172 

 1173 

By nature, this function exhibited frequent discontinuities, and so we applied a cubic smoothing 1174 

filter (Savitzky-Golay) with large window (window-size 601 among data between 0 and 700).  1175 

This gave a function 𝑀𝐸𝐺"#(ℎ) which can be summarized as the maximum expected technical 1176 

noise, for a peak interval whose lowest occurring height is ℎ. 1177 

 1178 

We used this expectation of technical noise to normalize a metric of peak height variation 1179 

among all peak intervals (CREs).  Namely, for any such peak interval, there is a lowest height 1180 

ℎ and highest height 𝐻, among the 29 samples.  The ‘gap’ of the peak interval is just the 1181 
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difference 𝐻	– 	ℎ, and we defined the ‘relative peak variability’ to be the gap normalized by the 1182 

maximum expected technical noise: 1183 

𝑅𝑃𝑉 =
𝐻 − ℎ

𝑀𝐸𝐺"#(ℎ)
. 1184 

Correlation between of genes and nearby peaks 1185 

 1186 

When considering ATAC peak intervals "near" a gene, we considered all peaks whose 1187 

midpoint was within the length of the gene or 50kbp upstream of the gene.  We added another 1188 

1000bp of tolerance to avoid close misses, narrow peaks, etc., to create a window around each 1189 

gene. 1190 

 1191 

To correlate gene expression and peak height, we took clonal averages of each -- averaging the 1192 

three 25-cell samples for each of the 16 clones within the gene expression matrix and averaging 1193 

the replicate samples to find ATAC peak height averages for the same 16 clones.  Pearson 1194 

correlation coefficients were used throughout. 1195 

 1196 

Principal component regression and covariant peaks 1197 

 1198 

For some genes, we found numerous nearby CREs whose ATAC peak height was highly 1199 

correlated with gene expression.  To assess the independent contributions of nearby CREs, we 1200 

performed principal component regression (47).  For each gene, we considered all CREs within 1201 

the usual window, restricting to those that reached a height of 30 as before.  Among these 1202 

peaks, we restricted to those whose correlation with gene expression reached a threshold of 1203 

𝑅$ > 	0.05, a light supervision to remove some peaks which were irrelevant to gene 1204 

expression. 1205 

 1206 
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We computed the correlation matrix of the remaining peaks and defined ‘eigenpeaks’ to be the 1207 

eigenvectors of this correlation matrix, i.e., the eigenpeaks for a given gene are the principal 1208 

components of the relevant nearby peaks.  By construction, eigenpeaks do not ‘see’ gene 1209 

expression (except for the light initial filter) and eigenpeaks have zero correlation with each 1210 

other.  Subsequently, we computed the correlation of the eigenpeaks with gene expression.  1211 

Eigenpeaks which are highly correlated to gene expression reflect additive combinations of 1212 

CREs that predict gene expression.  Even when there were many (up to nine) highly correlated 1213 

peaks near a gene, there was rarely more than one highly correlated eigenpeak (Fig. S7, D and 1214 

E).  This indicates that nearby CREs typically act in concert to regulate gene expression.   1215 

 1216 

Data Availability 1217 

All sequencing data will be deposited and made available to the scientific community upon 1218 

request pending publication.  1219 

 1220 

Code Availability 1221 

Processed data and code needed to generate figures from this study are available online at 1222 

GitHub at: https://github.com/MartyWeissman/ClonalOmics and contains python notebooks 1223 

with instructions for data processing as well as all data necessary to run notebooks (processed 1224 

sequencing data, metadata files). 1225 
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