
Ann. N.Y. Acad. Sci. ISSN 0077-8923

ANNALS OF THE NEW YORK ACADEMY OF SCIENCES
Special Issue:Keystone Symposia Reports

Concise Original Report

Single cell biology—a Keystone Symposia report

Jennifer Cable,1 Michael B. Elowitz,2,3 Ana I. Domingos,4,5 Naomi Habib,6,7 Shalev Itzkovitz,8

Homaira Hamidzada,9 Michael S. Balzer,10 Itai Yanai,11 Prisca Liberali,12 Jessica Whited,13

Aaron Streets,14,15 Long Cai,2 Andrew B. Stergachis,16 Clarice Kit Yee Hong,17,18

Leeat Keren,8,19 Martin Guilliams,20 Uri Alon,21 Alex K. Shalek,22 Regan Hamel,23

Sarah J. Pfau,24 Arjun Raj,25,26 Stephen R. Quake,15,27,28 Nancy R. Zhang,29 Jean Fan,30

Cole Trapnell,31 Bo Wang,27,32 Noah F. Greenwald,19 Roser Vento-Tormo,33

Silvia D.M. Santos,34 Sabrina L. Spencer,35 Hernan G. Garcia,36 Geethika Arekatla,37

Federico Gaiti,38 Rinat Arbel-Goren,39 Steffen Rulands,40 Jan Philipp Junker,41 Allon M. Klein,42

Samantha A. Morris,18,43 John I. Murray,25 Kate E. Galloway,44 Michael Ratz,45

and Merrit Romeike46
1PhD Science Writer, New York, New York. 2Division of Biology and Biological Engineering, California Institute of Technology,
Pasadena, California. 3Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California.
4Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, United Kingdom. 5The Howard Hughes Medical
Institute, New York, New York. 6Cell Circuits Program, Broad Institute, Cambridge, Massachusetts. 7Edmond & Lily Safra
Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. 8Department of Molecular Cell Biology,
Weizmann Institute of Science, Rehovot, Israel. 9Toronto General Hospital Research Institute, University Health Network;
Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research and Department of Immunology,
University of Toronto, Toronto, Ontario, Canada. 10Renal, Electrolyte, and Hypertension Division, Department of Medicine and
Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia,
Pennsylvania. 11Institute for Computational Medicine, NYU Langone Health, New York, New York. 12Friedrich Miescher
Institute for Biomedical Research (FMI), Basel, Switzerland. 13Department of Stem Cell and Regenerative Biology, Harvard
University, Cambridge, Massachusetts. 14Department of Bioengineering and Center for Computational Biology, University of
California, Berkeley, Berkeley, California. 15Chan Zuckerberg Biohub, San Francisco, California. 16Division of Medical
Genetics, Department of Medicine, University of Washington, Seattle, Washington; and Brotman Baty Institute for Precision
Medicine, Seattle, Washington. 17Edison Center for Genome Sciences and Systems Biology, Washington University in St.
Louis, St. Louis, Missouri. 18Department of Genetics, Washington University in St. Louis, St. Louis, Missouri. 19Department of
Pathology, School of Medicine, Stanford University, Stanford, California. 20Laboratory of Myeloid Cell Biology in Tissue
Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, and Unit of Immunoregulation and Mucosal
Immunology, VIB Inflammation Research Center, and Department of Biomedical Molecular Biology, Ghent University, Ghent,
Belgium. 21Faculty of Sciences, Department of Human Biology, University of Haifa, Haifa, Israel. 22Department of Chemistry
and Chemical Biology, Harvard University, Cambridge, Massachusetts. 23Department of Clinical Neurosciences and NIHR
Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom. 24Department of Neurobiology, Harvard
Medical School, Boston, Massachusetts. 25Department of Genetics, Perelman School of Medicine, University of Pennsylvania,
Philadelphia, Pennsylvania. 26Department of Bioengineering, School of Engineering and Applied Sciences, University of
Pennsylvania, Philadelphia, Pennsylvania. 27Department of Bioengineering, Stanford University, Stanford, California.
28Department of Applied Physics, Stanford University, Stanford, California. 29Graduate Group in Genomics and
Computational Biology and Department of Statistics, University of Pennsylvania, Philadelphia, Pennsylvania. 30Department of
Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland. 31Department of Genome Sciences, University of
Washington School of Medicine; Brotman Baty Institute for Precision Medicine; and Allen Discovery Center for Cell Lineage
Tracing, Seattle, Washington. 32Department of Developmental Biology, Stanford University School of Medicine, Stanford,
California. 33Wellcome Sanger Institute, Cambridgeshire, United Kingdom. 34The Francis Crick Institute, London, United
Kingdom. 35Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado.
36Department of Physics; Biophysics Graduate Group; Department of Molecular and Cell Biology; and Institute for
Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, California. 37ETH Zurich, Zurich, Switzerland.
38New York Genome Center and Meyer Cancer Center, Weill Cornell Medicine, New York, New York. 39Department of Physics
of Complex Systems, Weizmann Institute of Science, Rehovot, Israel. 40Max Planck Institute for the Physics of Complex
Systems, and Center for Systems Biology Dresden, Dresden, Germany. 41Berlin Institute for Medical Systems Biology, Max

doi: 10.1111/nyas.14692

1Ann. N.Y. Acad. Sci. xxxx (2021) 1–24 © 2021 New York Academy of Sciences.

http://crossmark.crossref.org/dialog/?doi=10.1111%2Fnyas.14692&domain=pdf&date_stamp=2021-10-03


Single cell biology Cable et al.

Delbrück Center for Molecular Medicine, Berlin, Germany. 42Department of Systems Biology, Blavatnik Institute, Harvard
Medical School, Boston, Massachusetts. 43Department of Developmental Biology and Center of Regenerative Medicine,
Washington University School of Medicine, St. Louis, Missouri. 44Department of Chemical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts. 45Department of Cell and Molecular Biology, Karolinska Institute, Solna,
Sweden. 46Max Perutz Laboratories Vienna, University of Vienna, Vienna, Austria

Address for correspondence: Annals Author. annals@nyas.org

Single cell biology has the potential to elucidate many critical biological processes and diseases, from development
and regeneration to cancer. Single cell analyses are uncovering the molecular diversity of cells, revealing a clearer
picture of the variation among and between different cell types. New techniques are beginning to unravel how dif-
ferences in cell state—transcriptional, epigenetic, and other characteristics—can lead to different cell fates among
genetically identical cells, which underlies complex processes such as embryonic development, drug resistance,
response to injury, and cellular reprogramming. Single cell technologies also pose significant challenges relating
to processing and analyzing vast amounts of data collected. To realize the potential of single cell technologies, new
computational approaches are needed. On March 17–19, 2021, experts in single cell biology met virtually for the
Keystone eSymposium “Single Cell Biology” to discuss advances both in single cell applications and technologies.

Keywords: development; differentiation; lineage tracing; reprogramming; single cell sequencing; spatial transcrip-
tomics

Introduction and keynote address

The ability to isolate and understand the behavior
of single cells within a larger system has changed
the way biological systems are approached. Single
cell biology has the potential to transform our
understanding of many critical biological processes
and diseases, from development and regeneration
to cancer. Despite this potential, single cell biology
also faces many challenges. The wealth of data
accrued by analyzing transcriptomic, epigenomic,
and other data obtained from thousands of cells
requires new computational tools and data analysis
approaches.
On March 17–19, 2021, experts in single cell

biology met virtually for the Keystone eSymposium
“Single Cell Biology.” Bringing together researchers
developing single cell biological tools with those
utilizing these technologies, the symposium’s
goals included identifying new opportunities for
technology development and applications.

The meeting focused on (1) development, how
individual cells differentiate within the context of a
developing embryo to generate all the cell types and
structures of an adult organism; (2) spatial analy-
sis, identifying the different cell types within a tis-
sue or disease site and determining how they inter-
act with and respond to their neighbors to support
tissue function and homeostasis; (3) disease, under-
standing how cell populations change in response
to disease or injury and how they localize within a
diseased tissue; and (4) new technologies, new tools
for single cell data analysis to make precision mea-
surements on multiple aspects of cellular identity,
such asmorphology, composition and spatial distri-
bution of proteins andmetabolites, gene expression,
chromatin organization, and epigenetics.

Michael B. Elowitz from the California Institute
of Technology opened the symposium with the
keynote address, beginning with an overview of
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the recent revolution in single cell biology. Histor-
ically, cells have been identified and classified based
on morphology and function. More recent single
cell analyses are uncovering the immensemolecular
diversity of cells, revealing a complex picture of the
variation among and between different cell types.
Technologies like single cell RNA sequencing

(scRNA-seq) provide an unbiased way to deter-
mine the transcriptional state of individual cells;
clustering cells based on their transcriptional pro-
file can reveal cell types and provide insight on
how cell states change during development and
differentiation. Spatial transcriptomics and imag-
ing techniques can provide information on where
different cell states localize within a tissue or tumor
microenvironment (TME). Dynamic barcoding
techniques are able to not only provide information
on cell types, but also on how different cell types
are related, thus enabling researchers to reconstruct
lineage relationships of cells during development
or even across evolution.
During his keynote, Elowitz stressed that one of

the remaining unmet needs in single cell biology
is understanding the underlying molecular circuits
that establish a variety of fates that cells can transi-
tion to and from in a controlled manner. Although
there has been a lot of progress delineating the
signals and transcription factors that control cell
fate, mapping these interactions as circuits gets
complex very quickly. It is difficult to tease out
which subsets of interactions are sufficient to result
in multistability and controlled transitions.
Elowitz’s group is creating synthetic circuits

that establish, stabilize, and control cell states to
understand how cells can exist in a huge variety of
controllable states. There are several features that a
synthetic circuit should recapitulate:

� multistability: the ability to produce multiple
stable states;

� state switching: the ability to switch states in a
controlled way;

� irreversible and hierarchical differentiation
programs; and

� expandability: the ability to expand the system
to include more states.

Looking at natural circuits, Elowitz’s group noticed
two common themes among mammalian fate reg-
ulators: promiscuous dimerization, for example,

many transcription factors function as homo- and
heterodimers, and autoregulation.
Ronghui Zhu, a graduate student in Elowitz’s

group, designed a class of synthetic cell fate control
circuits based on these two themes calledMultiFate.
The simplestMultiFate circuit,MultiFate-2, consists
of two transcription factors that can homodimerize
to activate expression of their respective genes
or form an inactive heterodimer. The system can
be simply described mathematically. The phase
diagram of MultiFate-2 shows that the system
results in three stable conditions that can be desta-
bilized by altering parameters like protein stability.
MultiFate-2 can also be expanded to MultiFate-3,
which incorporates a third transcription factor to
generate seven stable states. Elowitz’s group has
validated the MultiFate model in cells using zinc
finger motifs that are engineered to homodimerize
and activate expression of a fluorescent target;
heterodimerization with a competing zinc finger
blocks gene expression. The system is controllable
in that dimerization and protein stability can be
controlled via small molecules.1
As predicted by the phase diagram, MultiFate-2

produces three stable states in cells that remain
stable for at least 18 days. The system allows for
state switching—ectopic expression of a transcrip-
tion factor that switches a cell’s state—as well as for
irreversible transitions. Transiently destabilizing
the heterodimer state by decreasing protein stability
forces cells into either a high A or a high B state;
cells do not revert back to their original state when
protein stability is restored. Elowitz’s group has also
incorporated a three-component MultiFate system
(MultiFate-3) into cells, which similarly behaves as
predicted: generating seven states, each stable over
extended timescales of weeks.1
Elowitz expects that MultiFate will provide a

core capability necessary for synthetic multicellular
organisms. His lab is also working on other features
of organisms, such as intercellular signaling2 and
cell population control, to build such a synthetic
system.3

Single cell biology of mammalian organs

The first session of the symposium focused on
single cell biology of mammalian organs. Speakers
showed how single cell techniques can be used
to understand how different cell types function
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Figure 1. Sympathetic neuron-associated macrophages
contribute to obesity by importing and metabolizing
norepinephrine. These macrophages integrate a heteroge-
neous neuroimmune niche within sympathetic nerves (Red:
TH, green: LyzM-GFP).

and interact within an organ, both in normal and
disease-related processes.

Ana I. Domingos from the University of Oxford
showed how sympathetic nerves that enervate
white adipose tissue regulate adipose cells (Fig. 1).
Domingos’s lab was the first to confirm that white
adipose tissue is enervated, that is, sympathetic
nerves form neuro-adipose junctions. Using opto-
genetics to locally activate sympathetic neurons
in adipose tissue was sufficient to induce leptin-
driven lipolysiswithin adipocytes, leading to deplet-
ing of a white adipose mass.4 Adipose tissue nor-
mally produces the hormone leptin in proportion
to the amount of fat in the body. When the brain
senses leptin, it sends signals to decrease food
intake, which reduces adipose tissue. Once lep-
tin levels decrease to a certain point, the brain
increases food intake. At homeostasis, leptin signal-
ing keeps weight within a defined, narrow range.
During obesity, leptin signaling is not sensed by
the brain, and lipolysis is reduced. Domingos is
investigating whether activating sympathetic neu-
rons in adipose tissue by targeting sympathetic-
associated macrophages can induce lipolysis and
promote weight loss.5 Her lab developed a class of
drugs known as sympathofacilitators, which have
been shown to increase lipolysis and thermogene-
sis in mice without altering food intake or locomo-
tor activity.6 Domingos also presented unpublished
single cell sequencing data showing that there are
many types of immune cells in the sympathetic gan-

glia. She hopes that characterizing these immune
cells will provide insights into the role of leptin in
immunometabolism.7

Naomi Habib from the Hebrew University of
Jerusalem presented work on dissecting the cel-
lular landscape of Alzheimer’s disease. Multiple
brain cells have been implicated in disease pro-
gression. Instead of taking a neuron-centric view
of Alzheimer’s disease, Habib’s group is interested
in the entire cellular environment that may con-
tribute to pathology, hypothesizing that cells such
as microglia, oligodendrocytes, astrocytes, and vas-
cular cells may be driving disease. Using single-
nucleus RNA-seq (snRNA-seq) to build detailed
cellular maps of healthy and diseased brains in
mice, Habib’s group, in collaboration with the
Schwartz and Regev labs, has identified glial and
astrocyte populations associated with Alzheimer’s
disease. Disease-associated astrocytes have a dis-
tinct expression profile, are localized near amyloid
plaques, appear early in the course of Alzheimer’s
disease, and increase with natural age.8 Habib’s
group is working to understand the functional role
of disease-associated astrocytes and on profiling
other disease-associated cell types in the mouse and
human brains. In collaboration with the De Jager
and Menon labs and others, they have used a com-
bination of sn RNA-seq on 24 postmortem human
brains and bulk sequencing of 640 brains to identify
disease-associated cells. Similar to mouse brains,
the data from human brains reveal specific glial
cell populations associate with specific Alzheimer’s
disease-related traits such as cognitive decline or
neurofilament tangles load.9 The group found a net-
work structure among the different cell populations,
composed of cellular communities of coordinated
cell populations, and linked specific cellular com-
munities with Alzheimer’s disease traits. In this way,
Habib and her colleagues hope to describe the cellu-
lar environment of cognitive decline in aging brains.

Shalev Itzkovitz from the Weizmann Institute pre-
sented work on how enterocytes of the intestinal
epithelium change as they migrate from the crypt
up the villus. The environment surrounding the villi
is not uniform; there are oxygen, nutrient, bacterial,
and signaling gradients from the crypt to the tip that
could impact cell fate as progenitor cells in the crypt
differentiate and migrate up the villus to the tip
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Figure 2. scRNA-seq to identify macrophage signatures and subpopulations that are shared across organs.

before they are finally shed.10 Itzkovitz’s group char-
acterized the transcriptional activity of five regions
in the villus by bulk RNA-seq and used these tran-
scriptional phenotypes to localize single-sequenced
cells along the villus. The results show that cells
along the length of the villus are transcriptionally
diverse, indicating that cells have different functions
as they migrate. At the bottom of the villus, entero-
cytes express antimicrobial genes. As they travel up,
they sequentially express the machinery for absorp-
tion of amino acids, carbohydrates, peptides, and
lipids. At the very tip of the villus, enterocytes
express genes involved in immune modulation.11
Itzkovitz’s work shows that enterocytes are not ter-
minally differentiated but constantly differentiating,
changing their transcriptional profile and function
as they move up the villus. Itzkovitz also described
unpublished work evaluating the changes in the
proteome along the villus and showed that tran-
scriptional profiles do not always correlate with pro-
tein profiles, primarily for proteins with long half-
lives. These differences between mRNA and pro-
tein levels have enabled Itzkovitz’s group to refine
their map of the function of enterocytes along the
villus and gain further insights into how the cells
optimize resource utilization for absorption-related
functions in the more resource-limited areas of the
villus.

Elucidating cell heterogeneity within organs
Homaira Hamidzada from Slava Epelman’s lab at
the University of Toronto presented unpublished
work to understand macrophage heterogeneity.
Previous work on macrophages has suffered from
a lack of consistency, making it difficult to find
commonalities and differences between studies.
Hamidzada has characterized macrophages from
five different organs in mice by scRNA-seq, iden-
tifying macrophage signatures and subpopulations
that are shared across organs (Fig. 2).

Michael S. Balzer from Katalin Susztak’s lab at
the University of Pennsylvania showed how sin-
gle cell profiling can be used to understand an
organ’s response to injury. Following acute kid-
ney injury, the kidney can either recover or the
injury can progress and become chronic. Working
in mice, Balzer et al. developed a model of adap-
tive and maladaptive kidney regeneration by titrat-
ing ischemic injury dose. In addition to performing
detailed biochemical and histological analysis, they
profiled transcriptomic changes at bulk and single
cell levels in >110,000 cells over time; these cur-
rently unpublished data show that varying degrees
of ischemic injury can result in trajectories in renal
cells with different expression programs. Further
analysis indicated kidney proximal tubule (PT) cells
as cells particularly susceptible to injury. Adap-
tive PT repair correlated with fatty acid oxidation
and oxidative phosphorylation. They also identified
a specific maladaptive profibrotic PT cluster after
long ischemia; these cells expressed proinflamma-
tory and profibrotic cytokines and attractedmyeloid
cells. Druggability analysis highlighted pyroptosis
and ferroptosis as vulnerable pathways in profi-
brotic cells.

Novel technologies in single cell analysis

Several speakers presented work on developing new
single cell technologies. Many of them focused on
spatially resolving either single cells within a tissue
or subcellular components within a single cell.

Spatial transcriptomics of cell populations
within tissues
With regard to localizing cell populations within
a tissue, Itai Yanai from New York University
presented work on spatial transcriptomics in
tumors. ScRNA-seq has revealed heterogeneity
within malignant cells that may have functional
consequences in diverse cancer types. Yanai’s group
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has detected three cancer cell states in melanoma
tumors via scRNA-seq.12 To confirm that these
states exist in the tumor itself, and not merely
artifacts of single cell sequencing, Yanai used
array-based spatial transcriptomics.13 In this
method, a tissue cryosection is placed on a bar-
coded array that contains oligonucleotides that can
capture an entire transcriptome and correlate with
position on the array; the technique does not pro-
vide single cell resolution, as each spot on the array
represents approximately ten cells. Array-based
spatial transcriptomics recapitulated the three
transcriptional programs identified by scRNA-seq
in melanoma tumors.12 Array-based spatial tran-
scriptomics can be combined with scRNA-seq to
reveal associations among cell states and cell types
within the TME. Using these methods together
revealed that in pancreatic ductal adenocarcinoma
inflammatory fibroblasts are consistently associ-
ated with cancer cells that express stress-like gene
programs.14 Yanai’s lab is currently working to
identify the intrinsic and extrinsic factors that lead
to these cancer cell states, as well as their adaptive
consequences within the tumor.15

Spatial resolution of subnuclear features
Several speakers described new technologies to
investigate the spatial arrangement of the genome
and nuclear features. Genomes are organized at
several levels, for example, DNA wrapped around
histones forming nucleosomes and higher order
chromatin arrangements. Techniques like Hi-C,16
GAM,17 and SPRITE18 can provide information on
what regions of the chromosome are near each other
in space, while methods like DNA fluorescence
in situ hybridization (FISH), chromosome paint,19
and in situ sequencing20 enable visualization of the
three-dimensional (3D) organization of chromo-
somes in the nucleus. In addition to a genome, the
nucleus also contains other features, such as chro-
matin compartments, nuclear pore complexes, the
nucleolus, and lamina, which may affect the spatial
organization of chromatin and gene regulation.

Aaron Streets from the University of Califor-
nia, Berkeley described a microfluidic platform
dubbed microDamID or “mu”DamID (microflu-
idic DNA adenine methyltransferase identification)
that merges imaging and sequencingmeasurements
within the same cell to map the association of the

genomewith nuclear features. Previously developed
by van Steensel and Henikoff,21 DamID measures
protein–genome interactions by genetically fusing a
protein to DNA adenine methyltransferase (DAM).
If the protein interacts withDNA,DAMwill methy-
late nearby sequences. DamID has proven to be a
powerful sequencing tool for single cell measure-
ments, where it has been used to measure interac-
tions between the genome and the nuclear lamina.22

Streets’s group has leveraged DamID in a
microfluidic platform that sequentially images
single cells and then performs DamID through a
series of sequential chambers. This technique has
been used to generate single cell laminar inter-
action maps.23 By comparing data across cells,
lamina-associated domains within the genome can
be divided into constitutive and variable domains
on the basis of the number of cells in which a locus
is associated with the lamina. Lamina association
can be used to probe cell type, as constitutive
lamina-associated domains are associated with
low gene expression. Streets’s group is further
exploring the lamina maps to see if there are
associations between nuclear abnormalities and
lamina-associated domains. Although the origi-
nal microfluidic DamID technique was relatively
low throughput, microfluidic cell barcoding and
sequencing, which link barcodes to cell images, can
increase the throughput.24

Long Cai from the California Institute of Technol-
ogy presented work on a separate technology to
image subnuclear structures. Cai’s group has com-
bined DNA sequential FISH (seqFISH+) with RNA
seqFISH and multiplexed immunofluorescence to
profile mRNA, DNA, and protein loci in situ in
single cells.25 The method expands upon single-
molecule FISH, which enables individual mRNA
transcripts to be visualized within a single cell.26,27
SeqFISH uses multiple rounds of hybridization to
distinguish different molecular species.28–30 RNA
seqFISH can scale up to the genomic level to local-
ize tens of thousands of mRNA transcripts within
a single cell.31 DNA seqFISH+ can resolve chro-
mosome structures on the order of ∼1 MB across
the genome to localize the chromosomes within the
nucleus. Multiplexed immunofluorescence is used
to localize proteins such as lamins, heterochromatic
markers, and nucleolar markers. These three tech-
niques are integrated into a single experiment to
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visualize mRNA, DNA, and proteins within a single
nucleus.25

Cai’s group has used this technique to gen-
erate the global architecture of the nucleus,
reconstructing chromosomes with up to 25-kb
resolution and systematically characterizing DNA–
chromatin interactions. Cai showed that there are
certain DNA loci that are consistently associated
with nuclear features across cells: while the arrange-
ment of the nuclear bodies and chromosomes can
appear random, when taken together, there are
anchoring points with respect to each other. Differ-
ent chromosomes have different arrangements of
these anchoring points, which results in a determin-
istic scaffold for chromosomal arrangement in the
nucleus.

AndrewB. Stergachis from theUniversity ofWash-
ington showed how Fiber-seq can be used to
determine the chromatin architecture of individual
chromatin fibers and, ultimately, provide insights
into how neighboring features along the same chro-
matin fiber work together to regulate gene expres-
sion. Fiber-seq improves upon the current resolu-
tion limit of single cell epigenomic methods. It can
achieve near base-pair resolution for fibers greater
than 10 kb in length. In short, nuclei are treated
with N6-methyladenine methyltransferase, which
selectively marks sites of chromatin accessibility by
incorporating a nonnative methyl group onto ade-
nine bases. After DNA extraction and fragmenta-
tion, the methylated sequences are determined via
single-molecule long-read DNA sequencing. Fiber-
seq can identify regions of actuated regulatory DNA
as well as protein-bound regions. Stergachis showed
that comparing patterns across fibers from mul-
tiple cells to construct the chromatin architecture
of individual fibers reveals widespread heterogene-
ity across cells. Because the mapped chromatin
fibers are so long, Fiber-seq can provide infor-
mation on coactuation of neighboring regulatory
elements. Fiber-seq mapping showed that neigh-
boring regulatory elements prefer to be coactu-
ated on the same chromatin fiber, suggesting that
regulatory architectures can impact neighboring
elements.32

Clarice Kit Yee Hong from Barak Cohen’s lab
at Washington University in St. Louis presented
unpublished work on a technique to identify chro-

matin features that influence gene expression noise.
Gene expression noise can be thought of as the vari-
ance in gene expression within a cell population.
Studies of position effect variegation have shown
that chromatin environments at different chromo-
somal locations can affect a gene’s expression. Genes
in euchromatin are expressed ubiquitously from cell
to cell, whereas there ismore variation between cells
for genes located near heterochromatin.
Hong and coworkers have developed single-

cell Thousands of Reporters Integrated in Par-
allel (scTRIP) to measure the effects of differ-
ent chromatin environment on gene expression
noise; scTRIP, an extension of TRIP,33 measures
the expression noise of the same reporter gene
integrated at many genomic locations. In short,
reporter genes are integrated into random loca-
tions with the genome, and the DNA and mRNA
from the reporter genes are counted to determine
gene expression; scTRIP can reliably measure noise
across the genome and provide insight into how
diverse chromatin environments affect expression
noise.

Single cell approaches to bridge local and
systemic decision making
Single cell technologies have also proven useful for
understanding different levels of decision making.
One of the key questions for understanding mul-
ticellular organisms is how distinct activities at a
single cell level affect multicellular processes like
development—and vice versa, how signals from an
organ, tissue, or embryo have effects at the single
cell level.

Prisca Liberali from Friedrich Miescher Institute
for Biomedical Research presented work on sin-
gle cell approaches to understanding collective cell
behavior. Liberali’s lab is interested in understand-
ing regulation at the individual cell level and how
individual decisions are coordinated at the multi-
cellular level to achieve the higher order functions
necessary for organs and tissue. Ultimately, Liberali
hopes to understand the intrinsic and extrinsic fac-
tors that enable genetically identical cells within an
organism to coordinate across both spatial and time
scales. This requires methods that can bridge large
ranges of spatial and temporal scales, for exam-
ple, relating events that occur at the molecular level
within minutes to events that occur at the tissue
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level within days. Liberali’s group combines imag-
ing technologies with scRNAseq to determine cel-
lular state during cell-type transitions and infer tra-
jectories of development. They have shown that
there is a lot of variability between cells at branch
points during differentiation; yet, defining the tra-
jectory of a given cell within this population by
scRNA-seq is difficult because it is often deter-
mined by extrinsic cues. Liberali’s group is devel-
oping various methods to address these problems.
They have characterized hundreds of thousands of
individual organoids with high-dimensional mea-
surements and perturbations.34,35 Liberali also dis-
cussed unpublished data focusing on symmetry
breaking within embryos.

Jessica Whited from Harvard University presented
work on local and systemic responses to injury in
the salamander axolotl. Axolotl, like all salaman-
der species, can regenerate limbs after amputation.
The process involves formation of a blastema made
of undifferentiated progenitor cells that prolifer-
ate, differentiate, and eventually form a new limb.
Whited’s group has performed bulk and single-
cell sequencing of blastema cells to understand
the genes and trajectories involved in blastema
formation.36–38 During her talk, Whited focused on
what occurs before blastema formation. She pro-
posed a two-step model for blastema formation—
an activation step in which some cells reenter the
cell cycle and a conversion event, in which a por-
tion of activated cells convert to blastema cells.
Althoughmany animals undergo the activation step
in response to injury, the conversion step is unique
to regenerative animals. Whited’s group has shown
that amputation elicits a systemic response, activat-
ing cell proliferation in both injured and uninjured
limbs. Many of the activated cells are muscle satel-
lite cells that replenish themuscle after injury.39 The
group is working to understand the signals involved
that activate cells both locally and systemically and
why only cells at the injured limb undergo conver-
sion to blastema cells. Toward this goal, they are
developing technologies to visualize cells at vari-
ous stages of the cell cycle to learn more about
the activated cells and leveraging bulk sequencing
data to identify blastema reporters and visualize
blastema development in live animals to monitor
systemic blastema reporter activation. Additional
work is focusing on identifying the full repertoire

of cell types in responding tissues and how the acti-
vation signal is extinguished in distant sites.

Single cell analysis in pathology

As the roles of, and interactions between, different
cell types and populations become more apparent
in diseases and injury response, single cell technolo-
gies can provide unique insights into how cell popu-
lations change in response to injury or diseases such
as cancer. Single cell technologies allow researchers
to understand not only broad changes in cell popu-
lations, but also to pinpoint the spatial and temporal
changes in cell populations. Below are presentations
focused on using technologies that provide spatial
insights on specific cell populations, theoretical
modeling to predict how cell populations change in
response to injury, and scRNA-seq to characterize
how cell populations are affected by SARS-CoV-2
infection and how that relates to disease severity.

Leeat Keren from the Weizmann Institute of Sci-
ence described work using multiplexed ion beam
imaging by time of flight (MIBI-TOF) to better
understand the TME. MIBI-TOF provides single-
cell as well as subcellular resolution of expres-
sion of up to 40 proteins, for example, tumor,
immune cell, and immune regulation markers.40
Keren’s group has used MIBI-TOF to character-
ize immune cells in tumors of patients with triple-
negative breast cancer (TNBC). They found that
the immune composition was highly heteroge-
neous between patients. Patients with more leuko-
cytes had a higher proportion of T regulatory
cells while those with fewer had a higher pro-
portion of macrophages, suggesting organization
in the immune response to TNBC; indeed, spatial
enrichment analysis revealed subtypes of immune–
tumor organization. Keren showed that immuno-
logically hot tumors, with high tumor infiltrating
lymphocytes, can be classified into compartmen-
talized and mixed tumors. In compartmentalized
tumors, large areas of immune cells are spatially
separated from tumor cells; the tumor–immune
boundary contains suppressive PD-L1–expressing
immune cells. By contrast, in mixed tumors, tumor
and immune cells are more interspersed, and
PD-L1 is primarily expressed on tumor cells. Com-
partmentalized tumors were associated with higher
survival.40,41 This has also been seen in head and
neck squamous cell carcinoma,42 suggesting that
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Figure 3. A liver proteogenomics atlas is being developed using several single cell technologies, including CITE-seq and RNA
expression to quantify both RNA and protein expression.

this tumor–immune architecture may be relevant
in several tumor types. Although the TME is
generally thought of asmore disorganized than nor-
mal tissue, Keren suggested that organization of
cell types drives function within the TME. Keren’s
group is also working on developing methods to
automatically identify microenvironments, as well
as a neural network–based approach to embedmul-
tiplexed images, and determinemicroenvironments
without the need for cell segmentation.

MartinGuilliams fromGhentUniversity described
a collaboration between his lab and Charlotte
Scott’s group to develop a proteogenomics liver
atlas (Fig. 3), which is still a work in progress.
Guilliams described some of the goals, methods,
and expected offerings of the project. The two
groups have begun developing a mouse liver atlas
to aid in preclinical and basic research; they will
also develop a human liver atlas to correlate clini-
cal and mechanistic research. The proteogenomics
atlas is being developed using several single cell
technologies, including Cellular Indexing of Tran-
scriptomes and Epitopes by Sequencing (CITE-
seq)43 and RNA expression to quantify both RNA
and protein expression. Guilliams showed several

examples where CITE-seq can detect proteins that
are poorly detectable by mRNA. Using the algo-
rithm TotalVI,44 they also showed that cluster-
ing using mRNA and protein achieves better res-
olution than clustering using mRNA levels only.
Guilliams stressed that the liver atlas will have
practical uses for biological researchers. Not only
will it provide information on the precise loca-
tion of each cell type within the liver, it will
also include the best mRNA markers for spatial
analyses, the surface markers for flow cytometry–
gating strategies, and the surface markers for
microscopy.

Uri Alon from the Weizmann Institute of Sci-
ence presented work of former graduate student
Miri Adler together with Ruslan Medzhitov from
Yale that yielded a theoretical model for under-
standing inflammation and fibrosis.45 Alon’s group
uses a cell circuit approach to model fibrosis that
includes fibroblasts and macrophages that support
each other’s growth via growth factors. Using this
simplified circuit, the phase diagram reveals three
steady states. If the system contains just a few
macrophages and fibroblasts, they are unable to
support long-term growth, resulting in a healing
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phenotype. If the system contains an excess of
fibroblasts that can support their own growth via
an autocrine loop, it leads to a fibroblast-only fibro-
sis, which Alon has dubbed cold fibrosis. If the
system contains enough macrophages and fibrob-
lasts to support long-term growth, it leads to fibro-
sis containing both cell types, which Alon has
dubbed hot fibrosis. The model captures the phase
portrait of the in vitro coculture of fibroblasts
and macrophages, and provides several insights on
experimental observations on fibrosis. For example,
the model predicts that a transient injury will lead
to healing, whereas a prolonged or repeated injury
will lead to fibrosis because of the continued flow of
macrophages.45 It also explains experimental obser-
vations that removing macrophages when there
are few fibroblasts avoids fibrosis, while removing
macrophages when there are many fibroblasts leads
to fibrosis.46–50 The model also predicts that fibro-
blasts can be prevented or reversed by weakening
the fibroblast autocrine loop or cell proliferation, or
by depleting macrophages.45 Alon’s group is work-
ing to experimentally validate some of these predic-
tions in mouse models of heart fibrosis as well as
in the TME. Alon concluded with a musical sum-
mary from the sound of the Beatles (https://www.
youtube.com/watch?v=8CU1c-b4QHI).

Alex K. Shalek fromMIT discussed a collaboration
between their group, Boston Children’s Hospital the
University of Mississippi Medical School, and oth-
ers using single cell genomics to better understand
the cellular targets of SARS-CoV-2 and link clin-
ical and molecular features. scRNA-seq data from
a number of data atlases has revealed that cells
that coexpress two membrane proteins key for viral
entry, the ACE2 receptor and TMPRSS2, are quite
rare within a set of epithelial barrier tissues.51–53
To understand the in vivo viral targets in the tis-
sue first encountered by the virus, the group per-
formed scRNA-seq on cells isolated from nasopha-
ryngeal swabs used for viral testing. Protocols to
recover rare viable cells from frozen nasopharyn-
geal swabs are accessible to researchers.a The results
revealed major differences in nasopharyngeal cell
populations and trajectories in individuals with

awww.protocols.io/view/human-nasopharyngealswab-
processing-for-viable-si-bjhkkj4w.

COVID-19. Infected individuals had an increase
in secretory, deuterosomal, and developing cili-
ated cells and a decrease in mature ciliated cells.
Shalek also showed that severe COVID-19 is char-
acterized by a muted interferon (IFN) signature
in ciliated epithelial cells,54 a finding supported by
other studies.55–57 Codetection of host and viral
RNA via scRNA-seq revealed that infected cells
have increased expression of IFN-response genes
and receptors used for viral entry, while bystander
cells express genes associated with major histocom-
patibility complex class II presentation.54 scRNA-
seq data are available to researchers (at www.
covid19cellatlas.org). Shalek’s group is also profil-
ing lung tissue in patients who died of COVID-19
to understand how severe infection affects lung cell
populations and gene expression.58

Regan Hamel from Stefano Pluchino’s lab at the
University of Cambridge presented work using
scRNA-seq to understand cell dynamics during
spinal cord injury. Spinal cord injury induces per-
sistent inflammation that does not resolve, unlike
normal wound healing. Both microglia from the
central nervous system and macrophages from the
periphery infiltrate the site of injury. Infiltrating
macrophages, which are generally short lived, can
adopt the morphology and transcriptional pro-
gram of long-lived microglia and drive persistent
inflammation. Hamel used fate mapping in mice
to isolate infiltrating macrophages and microglia
at the site of injury at different time points and
characterized them by scRNA-seq. Hamel showed
that microglia can follow two trajectories after
injury, a cycling trajectory and a trajectory in which
cells transition through three states, first expressing
proinflammatory genes, including FSBP5, then
converting to a cytotoxic phenotype that negatively
regulates canonical wound healing, and finally
achieving a neuroprotective, anti-inflammatory
phenotype. Microglia and infiltrating macrophages
that express FSBP5 may disrupt the progression of
normal wound healing after spinal cord injury.59
Hamel is confirming the role of FSBP5 with other
methods like single-molecule FISH and immuno-
histochemistry as well as functional studies.

Sarah J. Pfau from Chenghua Gu’s lab at Har-
vard Medical School presented work on under-
standing how different cell types coordinate to
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regulate the blood–brain barrier (BBB).60 The per-
meability of the BBB is heterogenous throughout
the brain; this heterogeneity is important for the
brain’s function and its ability to communicate with
the periphery.61,62 Although the BBB is made up of
endothelial cells, it is known that the brain environ-
ment contains factors that affect BBB properties and
that brain cells such as pericytes and astrocytes are
important for the formation andmaintenance of the
BBB.63 Pfau is using scRNA-seq and 3D imaging
to assess morphological and transcriptional differ-
ences between various cells types in regions of the
brain with different BBB properties to see how local
differences modulate barrier function. The hope is
that understanding how regional BBB heterogeneity
is achieved can provide insights on regional brain
function and the development of more effective,
potentially region-specific targeted therapies.

Computational approaches

The wealth of data generated by single cell tech-
nologies requires new computational approaches to
integratemultichannelmeasurements thatmay pro-
vide information on transcriptomic, epigenetic, and
protein expression across thousands of cells. Speak-
ers presented new computational methods that can
integrate single cell technologies to provide deeper
insights on the relationship betweenmolecular state
and fate, increase the throughput of single cell tech-
nologies, achieve more accurate cell segmentation
in imaging studies, and predict future cell states on
the basis of static scRNA-seq data, as well as large-
scale projects to develop whole-organism atlases.

Arjun Raj from the University of Pennsylvania
described work to understand how nongenetic
variability within cell populations can lead to drug
resistance. Raj’s group has developed a method
called Rewind, which combines genetic barcoding
and RNA FISH, to look at a cell’s fate, for exam-
ple, drug resistance and to determine the state
that led to resistance. In short, cells are barcoded
and allowed to divide. Twin barcoded cells are
then separated; half are subjected to the drug to
determine which are drug resistant. Drug-resistant
cells are identified by RNA FISH probes, and the
twin cells that have not been subjected to the drug
can be characterized by a variety of single cell
techniques to determine what it was about that cell

that allowed it to be resistant. Using Rewind, Raj’s
group showed that the initial molecular state of a
cell predetermines its phenotype. Raj showed that
cells contain cryptic variability that only becomes
apparent after a perturbation, like drug exposure.64
Raj also presented unpublished data characterizing
morphology, transcriptome, and phenotype across
resistant cell colonies to classify resistant cells into
different subtypes. Raj hopes that understanding
how cells are primed for different fates will be
applicable across a range of biological processes,
including stem cell differentiation and induced
pluripotent stem cell reprogramming.

Stephen R. Quake from Stanford University and
the Chan Zuckerberg Biohub is working to cre-
ate organism-wide single cell transcriptome atlases.
Quake argued that while transcriptomics data
essentially simplify the cell into a “bag” of mRNAs,
providing little information on protein expression,
activity, or localization, it has proven useful to
provide insight on complex processes. For exam-
ple, Quake’s group has used single cell transcrip-
tomics to understand long-termmemory formation
in mice65 and the evolution of anatomical struc-
tures in the brain.66 Quake is involved in several
large-scale collaborative projects within the Bio-
hub to establish organism-wide cell atlases. The
Mouse Aging Cell Atlas characterizes eighteen tis-
sues at various ages, providing insights on aging-
related effects in shared cell types across tissues.67,68
The group has also developed an atlas using hete-
rochronic parabiosis, in which the circulatory sys-
tems of young and old mice are joined, revealing
gene expression and molecular-level changes con-
sistent with accelerated aging and rejuvenation.68
The Biohub is also working to develop a fly cell
atlas of approximately 400,000 cells and a few hun-
dred cell types, and a mouse lemur atlas of approx-
imately 250,000 cells and 30 tissues, which will be
the first nonhuman primate atlas. Finally, they have
recently begun work on a human atlas that will
include all human cell types from 25 tissues from
a single donor. Quake stressed that these projects
are large-scale, collaborative efforts that require a
range of expertise. The single cell transcriptome
atlases are useful references for researchers to pro-
vide insight on how genes are used in various cell
types.
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Nancy R. Zhang from the University of Penn-
sylvania described her group’s development of a
new method, Alleloscope, to estimate the allele-
specific copy number from scDNA-seq and the sin-
gle cell assay for transposase-accessible chromatin
sequencing (scATAC-seq) data. Copy number vari-
ation represents gains and losses of large portions of
the genome and is a hallmark ofmany cancers.Most
current single cell methods are limited to assess-
ing total copy number and do not provide informa-
tion on which allele is affected during large-scale
deletions or duplications. Zhang argued that these
methods therefore miss a lot of intratumor het-
erogeneity. For example, it has been observed that
different haplotypes of a genome segment can be
amplified across different regions of a tumor.66 This
intratumor heterogeneity would not be detected by
looking at total copy number alone or by aver-
aged allelic ratios across the tumor. Alleloscope esti-
mates the allele-specific copy number for scDNA-
seq and scATAC-seq data. Unlike other methods,
it does not require external phasing information
and can achieve high accuracy under low cov-
erage. Alleloscope allows one to dissect the con-
tribution of chromosomal instability (copy num-
ber variations) and epigenetic plasticity (chromatin
accessibility changes) to intra-tumor heterogene-
ity. Zhang’s group has applied Alleloscope to pri-
mary breast tumor and primary and metastasized
colorectal and gastric tumors, revealing pervasive
intratumor heterogeneity, including highly complex
multiallelic copy number aberrations differentiated
by haplotype ratios that have previously been under-
appreciated or ignored.69

Jean Fan from Johns Hopkins University pre-
sented work using computational modeling
to infer changes in cellular state from spatially
resolved transcriptomic imaging data. Fan’s group
applies multiplexed error-robust FISH (MERFISH),
which uses combinatorial labeling, barcoding, and
sequential imaging, to profile spatially resolved
genome-wide transcriptomes in single cells within
fixed cultures and tissues.70 MERFISH provides
information at both the intracellular level, revealing
the organization of mRNAs within cells, as well
as at the tissue level, revealing the organization
of transcriptionally distinct cell types and states
within tissues.71 To explore the wealth of data
produced by MERFISH, Fan’s group developed

an interactive web tool, MERmaid (available at
https://jef.works/MERmaid/). Although such spa-
tially resolved transcriptomic imaging data provide
a fixed snapshot of the transcriptome, not all tem-
poral information is lost. Fan’s group uses RNA
velocity in situ analysis to infer future cellular
transcriptional states.71,72 RNA velocity in situ
analysis models the rate of change of cytoplasmic
mRNA levels as a function of transcripts exported
from the nucleus and the rate of degradation. For
example, if a cell has more nuclear expression than
expected at steady state, the model infers that the
gene is being upregulated. RNA velocity analysis
has been used to demonstrate changes in gene
expression throughout the cell cycle, as well as dur-
ing neurodevelopment.72 However, approaches to
visualize RNA velocities generally rely on project-
ing the observed and future cellular transcriptional
states onto a two-dimensional (2D) embedding.
Depending on which 2D embedding is chosen,
different aspects of cellular dynamics may be fea-
tured. Fan’s group has developed VeloViz to directly
integrate cellular dynamics predicted from RNA
velocity analysis in constructing 2D embeddings
to visualize cellular trajectories. VeloViz has been
used to visualize the differentiation of pancreatic
ductal cells (Fig. 4) and is robust enough to predict
global trajectories even if intermediate cell states
are missing.73 The software package and tutorials
are available (at https://jef.works/veloviz/).

Bo Wang from Stanford University presented
work using single cell sequencing to map cell-type
evolution. Molecular evolution can blur cell-type
relationships across species: genes are lost while
others expand or duplicate, and regulatory net-
works expand and change throughout evolution.
To address these challenges, Wang’s group has
developed self-assembling manifold mapping
(SAMap), which mutually maps cell type and gene
homology across species. Unlike other algorithms,
which require one-to-one gene orthology, SAMap
allows one-to-many homologs to allow for gene
duplication events. SAMap is an extension of SAM,
a robust manifold reconstruction algorithm.74
SAMap accounts for molecular evolution during
cell-type mapping and can identify gene substi-
tution events, where genes exhibit more similar
expression to their paralogs than their orthologs.
SAMap was able to correctly recapitulate gene
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Figure 4. VeloViz integrates RNA velocity information to visualize cellular trajectories. (A) Cartoon of the expected cellular tra-
jectory for pancreatic endocrinogenesis (see https://doi.org/10.1242/dev.173849). (B) Single cell RNA-seq of the developingmouse
pancreas visualized using UMAP and colored by cell type. Inset shows a subsample of the data where the number of differentiat-
ing endocrine progenitor cells is sparse (highlighted in the red circle). Visualization of the subsampled data using UMAP (C) and
tSNE (D) results in two distinct clusters containing cells before and after the differentiation gap. Arrows show the projection of
velocities onto the embeddings, suggesting that these clusters of cells are part of biologically distinct subpopulations rather than
the same biological trajectory. A cartoon of the potential biological misinterpretation from such visualizations is shown below. (E)
Visualization of the subsampled data using VeloViz with projected velocity arrows. By incorporating information about each cell’s
predicted future transcriptional state from RNA velocity, VeloViz can visualize relationships among cells that are more consistent
with the expected cellular trajectory.

ontogeny between zebrafish and frog, suggesting
broad concordance between cell-type transcrip-
tomic signatures and development origins. It also
detected several homologous cell types arising from
distinct developmental lineages, and even different
germ layers (Fig. 5). Wang’s group has subsequently
successfully mapped 20 species using SAMap.
Mapping cell atlases across long evolutionary dis-
tances reveals two distinct cell-type conservation
patterns: (1) a one-to-one cell-type mapping, par-

ticularly between close animals, and (2) conserved
families of related cell types sharing common
gene expression programs that originate from a
common ancestral state across distantly related
species.75

Cole Trapnell from the University of Washing-
ton showed how Sci-Plex can be used to profile
millions of cells from thousands of specimens. Trap-
nell’s group has used Sci-Plex to follow embryonic
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Figure 5. Self-assembling manifold mapping (SAMap) anal-
ysis used to detect several homologous cell types arising from
distinct developmental lineages and even different germ layers.
Adapted from Ref. 75.

development in zebrafish to better understand how
genomes encode robust developmental programs.
Looking at every cell type and gene in embryos
across different stages of development is techni-
cally difficult to do with traditional scRNA-seq
technologies. Sci-Plex can profile millions of cells
from thousands of specimens. In short, embryos
are deposited into wells and dissociated into a
single-cell suspension; each is then labeled with an
oligonucleotide and then data are combined and
analyzed. The results reveal whole-genome tran-
scriptome data. Trapnell’s group has used Sci-Plex
to understand how the abundance of each cell type
varies across embryos and whether perturbations
affect that variability.76 Sci-Plex can accurately phe-
notype and stage individual embryos on the basis
of cell-type frequencies and detect shifts in abun-
dance and variance in cell types throughout the
embryo.Using Sci-Plex, Trapnell’s group has created
a time-resolved atlas of zebrafish embryonic devel-
opment that contains approximately 1 million cells
from 859 embryos at 1 of 15 time points. They have
also created atlases of embryos that were perturbed
either genetically or environmentally to under-
stand how these perturbations affect cell differen-
tiation and the distribution of cell types within the
embryo.

Noah F. Greenwald from Stanford University pre-
sented work on a new algorithm for cell seg-

mentation of cell imaging data, Mesmer (Fig. 6).
Single cell analyses of tissue data require sin-
gle cell segmentation, which has been challeng-
ing owing to the density and heterogeneity of cells
throughout tissues aswell as the differences between
imaging platforms, tissue types, and experimental
conditions. Mesmer is a novel deep learning algo-
rithm for cell segmentation that was specifically
designed for tissue data. It uses a two-channel image
and a deep learning model to predict the center
and shape of each cell and nucleus. To train the
deep learningmodel, Greenwald created TissueNet,
the largest training dataset for cell segmentation.
TissueNet contains 1 million paired annotations for
nuclear and whole-cell data from a range of tis-
sue types. Mesmer works across imaging platforms
and tissue types and is more accurate than previous
models, achieving human-level performance for cell
segmentation.77

Tracking dynamics of single cells

Although some single cell technologies offer a
snapshot of the cell populations present at a given
time, many enable researchers to track the fate
and differentiation of a specific cell or population
over time during key events like differentiation
and development. Speakers showed how cell states
change with respect to the extracellular environ-
ment, how tracking individual cell response to
drugs can provide insights for drug resistance, and
how synchronicity can be achieved among cells.

Roser Vento-Tormo from the Wellcome Sanger
Institute developed CellPhoneDB, a computa-
tional tool to identify cell–cell interactions from
single cell data.78,79 Updates to CellPhoneDB
integrate differential expression of interacting
ligands and receptors from scRNA-seq data with
spatial transcriptomics to improve cell–cell inter-
action predictions.79 CellPhone DB can inform
how cellular microenvironments influence cellu-
lar identify and responses. Vento-Tormo’s group
is using the technology to study regulation of
regeneration and differentiation in the human
endometrium. Since not much is known about
the human endometrium, Vento-Tormo’s group
first used scRNA-seq to profile the cell types in
endometrial biopsies and full thickness uterine wall
samples. They identified two novel SOX9+ epithe-
lial populations (SOX9+LGR5+/–) enriched in the
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Figure 6. Building a spatial proteogenomic atlas of the liver by combining single cell CITE-seq, single-nuclei sequencing, spatial
transcriptomics, and spatial proteomics. By integrating thesemultiomic datasets, we aim to provide validated strategies to reliably
discriminate and localize all hepatic cells.

proliferative phase of the menstrual cycle. Spatial
transcriptomics showed that the two SOX9+

populations have distinct spatial positions:
SOX9+LGR5+ populations in the lumen give
rise to luminal cells, while SOX9+LGR5– in the
basal layer give rise to secretory cells.80,81 The
group is using CellPhone DB to study the signals
from WNT and NOTCH that give rise to ciliary
and secretory lineage. Vento-Tormo also showed
that endometrial organoids derived from primary
tissue accurately recapitulate the expected distri-
bution of cell types by scRNA-seq as well as the
expected hormone-induced changes in cell types.
The organoids also validated the effects of WNT
and NOTCH on cell differentiation: inhibiting
NOTCH promoted ciliated cells, whereas inhibit-
ing WNT promoted secretory cells. Using these
results, Vento-Tormo’s group has built a model of
how cell states change across the menstrual cycle, as
well as how the lumen and glandular environments
differ with regard to WNT and NOTCH signaling
to affect cell fate.

Silvia D.M. Santos from the Francis Crick Insti-
tute showed how her group combines experimen-
tal and computational methods to understand cell
decisionmaking, such as undergoing cell division or
differentiation. Santos’s group uses human embry-
onic stem cells (hESCs) as a model for understand-
ing cell differentiation. Human ESCs can divide or
differentiate into one of the three germ layers, endo-
derm, mesoderm, or ectoderm. Differentiation is
driven by BMP4, which enables cells to differenti-
ate into all three embryonic germ layers. Santos’s
group combines scRNA-seq and micropatterns of

protein expression within an in vitro gastrulation
assay to understand the spatial-temporal features
of hESC differentiation. Using neural networks,
they can track individual cells as they differentiate
and undergo dramatic morphologic changes. San-
tos showed that hESCs commit to differentiation
unexpectedly early, within minutes of BMP4 expo-
sure, and well before morphological or expression
changes are apparent. This early commitment is
driven by BMP4-mediated SMAD signaling. After
BMP4 stimulation, SMAD is irreversibly activated
via a positive feedback loop, with cells at the periph-
ery activated first. scRNA-seq revealed the genes
affected by SMAD activations, including GATA3.
GATA3 was previously unknown to be a SMAD-
responsive gene, but Santos showed that its expres-
sion dynamics mimic SMAD activation both tem-
porally and spatially.82 She presented unpublished
work investigating whetherGATA3 is an early com-
mitment gene for hESC differentiation.

Sabrina L. Spencer from the University of Col-
oradoBoulder presented their work using real-time,
long-term time-lapse microscopy to study cell pro-
liferation at the single cell level. Her talk focused
on work with melanoma cells and the rapid adap-
tation subsets of cells used to escape from the
drug and to reenter the cell cycle. Although there
has been a lot of research on sequencing late-
stage resistant tumors in which cells acquire drug-
resistant mutations that lead to tumor relapse, less
is known about the quick, nongenetic adaptations
that cells undergo within the first few days of treat-
ment, which may represent the inception of drug
resistance. Using a live-cell CDK2 activity sensor
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Figure 7. Long-term live-cell microscopy of thousands of
tumor cells shows that exposure to the BRAF inhibitor
dabrafenib causes cells to enter a prolonged quiescence (blue).
Subsets of cells escape drug-induced quiescence and resume
proliferation after a couple of days (red). Increasing the drug
dosage reduces the proportion of cells that can escape but does
not eliminate it. From Ref. 85.

that reports on cell proliferation and quiescence83
along with EllipTrack, a new machine learning–
based cell-tracking pipeline for long-term live-cell
microscopy,84 Spencer’s group can visualize and
track thousands of melanoma cells over many days.
Exposure to the BRAF inhibitor dabrafenib causes
melanoma cells to enter a prolonged quiescence,
but subsets of cells are able to rapidly rewire to
escape drug-induced quiescence and resume pro-
liferation within 3 days. Although the proportion
of cells that escape depends on the drug dose,
even at high doses, Spencer’s group was never able
to eliminate this cycling subpopulation (Fig. 7).
They further showed that the ability to escape is
reversible upon drug withdrawal, suggesting that
escape is caused by nongenetic mechanisms. Sim-
ilar results were seen with other BRAF inhibitors
across several melanoma cell lines as well as in
patient biopsies. ScRNA-seq revealed that ATF4,

which is involved in the integrated stress response,
and p53, which is involved in the DNA damage
response, are upregulated in escapee cells. Spencer’s
group then independently confirmed that escapees
exhibit heightenedDNA replication stress andDNA
damage, yet are able to out-proliferate nonescapees,
suggesting that they could be the seed popula-
tion driving eventual acquisition of drug-resistance
mutations.85

Hernan G. Garcia from the University of Cali-
fornia Berkeley showed his lab’s work to under-
stand the spatiotemporal control of gene expres-
sion during development. Garcia’s ultimate goal is
to augment these gene networks withmolecular and
quantitative information to be able to predict phe-
notypes from these gene networks. Although a chal-
lenging task, Garcia and collaborators have devel-
oped theoretical models that successfully predict
transcriptional regulation in bacteria.86–88 Garcia’s
group is now moving to more complicated systems
like Drosophila. Garcia focused on understanding
expression of the gene even-skipped in the fruit fly
embryo to demonstrate how single cells regulate
their transcriptional dynamics to dictate macro-
scopic patterns in gene expression. In vivo imag-
ing of even-skipped transcripts in living embryos
showed that the promoters are turned on for short
periods of time, resulting in transcriptional bursts
rather than continuous transcription.89–91
In collaboration with Chris Wiggins’s group at

Columbia University, Garcia’s group devised a com-
putational model that infers promoter status from
single cell fluorescence data showing the number of
RNA polymerase molecules at the gene locus over
time. The model has revealed that the transcrip-
tional burst frequency and amplitude are regulated
to control gene expression across the embryo.92,93
The group is now working to understand how tran-
scriptional bursting is controlled at the molecular
level. Garcia’s group is developing new data anal-
ysis methods to visualize activator binding events
at a gene locus to eventually relate activator bind-
ing with transcriptional activity to understand what
transcription factors are doing before, during, and
after transcriptional bursts.

Geethika Arekatla from Timm Schroeder’s lab at
ETH Zurich presented unpublished work using
optogenetics and time-lapse microscopy94 to
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understand how the dynamics of ERK activation
affects embryonic stem cell (ESC) differentiation.
ERK inhibition allows ESCs to maintain pluripo-
tency. It has previously been shown that different
dynamics in ERK signaling can result in different
cell fates.95 However, how ERK signaling dynam-
ics affect differentiation is not well understood.
Arekatla’s system uses optoFGFR1 to quickly and
reversible trigger ERK activation,96 as well as a
fluorescent ERK sensor to detect ERK activity.
They showed how modifying the amplitude, dura-
tion, and frequency of ERK activation affects ESC
differentiation.

Federico Gaiti fromDan Landau’s lab atWeill Cor-
nell Medicine presented unpublished work on a
multiomics approach to understanding cancer evo-
lution. The complexity of cancer cell states revealed
by scRNA-seq is often independent of genetic diver-
sity. Gaiti uses a single cell multiomics platform
that captures genetic, epigenetic, and transcrip-
tomic informationwithin the same cell.97 Using this
platform, Gaiti has shown that stochastic, heritable
DNAmethylation changes (epimutations) can serve
as a molecular clock and therefore can be exploited
as native barcodes for high-resolution lineage trac-
ing, as the team previously showed in chronic lym-
phocytic leukemia cells. Gaiti focused on a collab-
orative project with Mario Suva at Massachusetts
General Hospital to understand epigenetic encod-
ing of cell states in human glioblastoma samples,
demonstrating heritability of malignant cell states,
with key differences in hierarchal versus plastic
cell state architectures in IDH-mutant and IDH-
wildtype glioblastoma, respectively.

Rinat Arbel-Goren from Joel Stavans’s lab at the
Weizmann Institute of Science presented work
on understanding circadian clock–controlled
processes in multicellular filaments of Anabaena
cyanobacteria (Fig. 8). Although circadian circuits
have been described in unicellular cyanobacteria,
less in known about circadian clocks in multi-
cellular cyanobacteria. Approximately 100 genes
have been shown to exhibit oscillatory behavior
in Anabaena.98 Arbel-Goren has studied one such
gene, pecB, which codes for a subunit of a photo-
synthetic pigment. Visualizing pecB expression at
the single cell level in real time via fluorescence
showed that pecB exhibits oscillatory expression

Figure 8. Circadian clock–controlled processes inmulticellu-
lar filaments of Anabaena cyanobacteria.

patterns despite constant light conditions, suggest-
ing an autonomous clock. pecB expression showed
synchronization and spatial coherence along the
multicellular filament despite cell-to-cell variabil-
ity. Deleting the clock genes kaiABC abolished this
oscillatory behavior and spatial coherence. Deleting
proteins involved in cell–cell communication also
reduced spatial coherence and synchronization.
Arbel-Goren’s work shows that circadian clocks in
Anabaena are coupled via cell–cell communication,
which allows oscillations in circadian genes to be
highly synchronized and spatially coherent.99

Steffen Rulands from the Max Planck Institute
presented work using methods from statistical
physics to infer spatiotemporal processes from sin-
gle cell sequencing data. As an example, Rulands
focused on the establishment of the methylome
that occurs early in development. To understand
how the methylome is established, cells are cul-
tured under conditions in which DNA methyla-
tion is erased and then released to conditions where
DNA methylases are upregulated. The methylome,
transcriptome, and local chromatin accessibility
are assessed via whole-genome bisulfite sequenc-
ing and single cell NMT-sequencing. Rulands
showed that although DNA methylation is estab-
lished at different rates for different sites, these
rates can be mathematically condensed, demon-
strating that there is a single mechanism by which
DNA methylation is established genome wide.
Rulands’s work highlights how analytical math-
ematical approaches from statistical physics can
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Figure 9. Overview over a method to infer emergent, spatiotemporal phenomena from linear sequencing data using mathemat-
ical tools from theoretical physics (blue).

complement computational tools in single cell
genomics. Although they focused on the spatial and
temporal rules that underlie the establishment of the
embryonic methylome, the work can also be gener-
alized to infer other emergent, spatiotemporal pro-
cesses from single cell sequencing (Fig. 9).100

Fate tracing of single cells

The symposium ended with a session on fate trac-
ing of single cells. Speakers demonstrated how
lineage tracing can be used to delineate the origins
of specific cell populations that arise because of
injury or during development as well as how single
cell technologies can be used to better understand
cell reprogramming.

Lineage tracing
Philipp Junker from the Max Delbrück Center for
Molecular Medicine (MDC) presented work on
lineage tracing in the regenerating zebrafish heart.
The zebrafish heart is a model for understanding
the mechanisms and consequences of cell acti-
vation in complex organs. After injury, multiple
cell types in the heart are activated and produce
pro-regenerative factors while cardiomyocytes
dedifferentiate and proliferate, resulting in efficient
regeneration and revascularization. Junker’s group,
in collaboration with Daniela Panáková, also at
MDC, is working to identify the transient cell states
in the regenerative niche and the cellular drivers
for regeneration. ScRNA-seq data of the zebrafish
heart revealed transient increases in fibroblasts and
immune cells as well as dedifferentiated cardiomy-
ocytes after injury. Junker identified three distinct
fibroblast populations present only in the injured
heart as drivers of regeneration on the basis of their
location, gene expression, and timing.101 Junker’s
group combined RNA velocity72 with CRISPR lin-

eage tracing to reconstruct a lineage tree102 of these
pro-regenerative fibroblasts. The results revealed
that two of the transient pro-regenerative fibrob-
lasts are derived from the epicardium, while the
other is derived from the endocardium. Inhibiting
WNT signaling depleted endocardial fibroblasts
while delaying regeneration and cardiomyocyte
dedifferentiation, suggesting that the epicardial
and endocardial fibroblasts may respond to per-
turbations differently.101 Junker’s work shows how
combining CRISPR lineage tracing, trajectory
analysis, and perturbation analysis can identify the
origin of disease-specific cell types.

Allon M. Klein from Harvard Medical School pre-
sented work on developing CoSpar, a coherent,
sparse optimization approach that infers transition
maps from clonal data. CoSpar provides a way to
order events in differentiation from lineage tracing
and single cell sequencing, which can be difficult
becasue of the high dimensionality and sparse, noisy
nature of the data. Although single cell landscapes
can generate hypotheses about the dynamics of dif-
ferentiation, there are often ambiguities. For exam-
ple, during a bifurcation event, it can be difficult to
know whether uncommitted cells begin to commit
when they approach a branch point or whether they
are strongly committed earlier. CoSpar infers tran-
sition maps by determining the probability that a
cell in a given state will transition into another state
using lineage-tracing scRNA-seq data. To reduce
ambiguity, the map is constrained with regard to
sparseness (i.e., most cells are only able to access
a few states) and coherence (i.e., cells in similar
states will have similar fates). Klein showed that
CoSpar is robust even with data paucity and can
rescue sparsely sampled trajectories. And it has
been benchmarked with ground truth datasets and

18 Ann. N.Y. Acad. Sci. xxxx (2021) 1–24 © 2021 New York Academy of Sciences.



Cable et al. Single cell biology

Figure 10. A rare population of cells capable of high
rates of transcription and proliferation reprogram at near-
deterministic rates to generate more functionally mature
induced motor neurons. Hypertranscribing/hyperproliferative
cells (HHCs) mitigate genomic stress introduced by high rates
of transcription and replication through the activity of topoi-
somerases. Topoisomerases resolve conflicts between tran-
scription and replication machinery as well as curate DNA
supercoils and R-loops to reduce transcription factor–induced
genomic stress. Increasing the HHC population through a
chemical and genetic cocktail increases reprogramming effi-
ciency by two orders of magnitude. Adapted from Ref. 117.

shown to predict heterogeneity associated with fate
bias in the examples tested.103

John I.Murray from theUniversity of Pennsylvania
presented work on generating a gene expression
map across Caenorhabditis elegans development.
C. elegans is an ideal model for a single cell under-
standing of development because it follows a robust
developmental process in which entire patterns of
cell division have been mapped out.104 This also
makes C. elegans an excellent system for testing
and validation of single cell methods. The Mur-
ray lab is using lineage-tracing methods to map
gene expression of every gene in every cell during
C. elegans development. Cell-tracking software
tracks cells over time and quantifies gene expres-
sion within each cell.105–107 Murray’s group has
generated single cell lineage-aligned expression
data for over 250 genes.106,108,109 Using scRNA-
seq data, they have created an atlas of C. elegans
embryos across development.110 Such large-scale
projects have revealed several lessons and themes,

including several examples of transcriptional
convergence, in which cells of different lineages
converge to the same fate, multilineage priming,
rapid transitions from lineage-correlated to cell
type–correlated transcriptomes, as well as frequent
discontinuities in projections between mother and
daughter cells that correspond to rapid changes in
gene expression in single cells.
Murray also described work on understanding

how embryos achieve precise spatial, temporal, and
dosage control in gene expression. Different species
have evolved different mechanisms to achieve such
transcriptional precision. Spatial averaging is seen
in the fruit fly, while temporal averaging is seen in
zebrafish. In C. elegans embryos, transcripts appear
to accumulate rapidly to precise, high levels.111,112
Murray’s group is collaborating with Arjun Raj’s
group to determine absolute transcript levels in sin-
gle cells during development, to understand how
these levels are regulated, and to determine how
defects in transcript dosage influence development.

Understanding cell reprogramming
Samantha A. Morris from Washington Univer-
sity in St. Louis and Kate E. Galloway from MIT
presented work on understanding what features
of a cell’s state make it more likely to undergo
reprogramming in order to use those insights to
increase reprogramming efficiency. Morris’s group
has developed two new tools for understanding cell
identity: Capybara, which measures cell identity
and fate transitions from single cell data;113 and
CellOracle, which infers gene regulatory networks
and predicts the outcomes of transcription factor
perturbations.114 CellOracle uses scRNA-seq and
scATAC-seq to infer gene regulatory networks and
then predicts how these networks change during
reprogramming. They have used CellOracle to
understand how transcription factors regulate cell
identity during reprogramming by simulating the
effects of transcription factor overexpression or
knockout throughout a gene regulatory network to
predict future gene expression values and the direc-
tion of future cell identity transition. CellOracle can
also be used to link early cell states to their eventual
fate. Morris showed that reprogramming mouse
embryonic fibroblasts to hepatocytes is a very inef-
ficient process.115 Lineage tracing with CellTagging
revealed two trajectories during the reprogramming
process. A few, rare cells followed a reprogramming
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trajectory while the majority followed a dead-end
trajectory. CellTagging was able to identify which
early cell states were predetermined to follow the
reprogramming trajectory.116 Characterizing the
gene regulatory networks in the early cell states by
CellOracle revealed that early networks are wired
very differently from cells destined to reprogram
and from those that follow dead-end trajectories.
One key difference is that Fos is highly connected in
gene regulatory networks in cells destined to repro-
gram. CellOracle simulations and experimental
methods showed that Fos overexpression enhances
reprogramming, moving cells from a dead-end
state to a reprogramming state.114,116
Galloway’s group has identified global increases

in both proliferation and transcription as char-
acteristics of reprogrammable cells. Among
fibroblasts induced to reprogram into motor
neurons, only a rare population of hypertranscrib-
ing/hyperproliferative cells (HHCs) reprogram at
high rates. Expanding this population increases
reprogramming efficiency. Galloway’s group has
worked to understand how this rare population
develops, with the hope of using this insight to
design genetic circuits that facilitate reprogram-
ming. High transcription and replication induce
high rates of genomic stress on a cell. ScRNA-seq
showed that HHCs have high expression of topoiso-
merases, which reduce genomic stress by resolving
R-loops and DNA supercoils induced by transcrip-
tion and replication (Fig. 10). Galloway proposed
that topoisomerases support HHCs by mitigating
the stress of high transcription and replication rates
that promote reprogramming.117 She argued that
this has implications for synthetic biology as the
field expands beyond designs focused on logical
functions to include how the physical arrangement
of elements in circuits supports or impedes requi-
site transcriptional dynamics.118,119 Understanding
how the structure of genetic programs designed
to promote reprogramming integrates into the
chromatin structure will be key to ensuring their
function.120,121

The meeting ended with talks highlighting unpub-
lished work on understanding cell fate and differ-
entiation.
Michael Ratz from Jonas Frisén’s lab at the Karolin-
ska Institute presented unpublished work on com-
bining in vivo clonal tracking and scRNA-seq to

understand neurogenesis in the mouse brain.122
The approach utilizes ultrasound-guided in utero
injections of complex lentivirus barcode libraries
into the developing mouse brain to label progenitor
cells. Ratz reconstructed thousands of clones to
uncover the existence of fate-restricted progenitor
cells in the early hippocampal neuroepithelium
and showed that microglia are derived from few
primitive myeloid precursors that massively expand
to generate widely dispersed progeny. By coupling
spatial transcriptomics with clonal barcoding, Ratz
revealed migration patterns and gene expression
of clonally related cells in densely labeled tissue
sections. Compared to classical fate mapping, their
approach enables high-throughput dense recon-
struction of cell phenotypes and clonal relations
at the single cell and tissue level in individual
animals and provides an integrated approach for
understanding tissue architecture.

Merrit Romeike from Christa Bücker’s lab at
Max Perutz Labs described work on deconvolut-
ing effects due to differentiation delays from direct
effects in cells with impaired differentiation.
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